Question
Download Solution PDFतीन विमाओं में इलेक्ट्रॉन-परिक्षेपण संबंध है ϵ(k) = ℏvFk, जहां vF फर्मी वेग है। यदि कम तापमानों (T << TF) पर फर्मी ऊर्जा ϵF की संख्या घनत्व n पर निर्भरता ϵF (n) ~ nα के अनुसार है, तो α का मान है।
Answer (Detailed Solution Below)
Option 1 : 1/3
Detailed Solution
Download Solution PDFव्याख्या:
\(ϵ(k) = ℏv_Fk\)
- यह इलेक्ट्रॉनों के लिए प्रकीर्णन संबंध है जहाँ \(v_F\) एक इलेक्ट्रॉन गैस में फर्मी स्तर के पास कणों की गति है। यह वास्तव में ग्राफीन या एक बहुत ही समान प्रणाली के साथ मामला है जहाँ हम एक रैखिक प्रकीर्णन संबंध का उपयोग कर रहे हैं।
- फर्मी तरंग संख्या \(k_F\) तक दिए गए k के साथ कणों (या इस मामले में इलेक्ट्रॉनों) की कुल संख्या तीन आयामों में \(n = ∫d³k = V{(4π/3)}{(k_F^3)}.\) के रूप में दर्शाई जा सकती है।
- चूँकि मूल प्रकीर्णन संबंध से \( k_F = \frac{ϵ_F}{(ℏv_F)}\): \(n ∝ (\frac{ϵ_F} {ℏv_F})^3.\)इस प्रकार, हम \(ϵ_F ∝ n^{(1/3)}\) पर पहुँचते हैं जो इंगित करता है कि \(α = \frac13.\)