समतलों के निम्न कुल z2 = kxy, k ∈ \(\mathbb{R}\) के लंबवत समतलों का सामान्य हल है

This question was previously asked in
CSIR-UGC (NET) Mathematical Science: Held on (26 Nov 2020)
View all CSIR NET Papers >
  1. ϕ(x2 - y2, xz) = 0, ϕ ∈ C1 (\(\mathbb{R}\)2)
  2. ϕ(x2 - y2, x2 + z2) = 0, ϕ ∈ C1 (\(\mathbb{R}\)2)
  3. ϕ(x2 - y2, 2x2 + z2) = 0, ϕ ∈ C1 (\(\mathbb{R}\)2)
  4. ϕ(x2 + y2, 3x2 - z2) = 0, ϕ ∈ C1 (\(\mathbb{R}\)2)

Answer (Detailed Solution Below)

Option 3 : ϕ(x2 - y2, 2x2 + z2) = 0, ϕ ∈ C1 (\(\mathbb{R}\)2)
Free
Seating Arrangement
3.8 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

व्याख्या:

दिया गया है z2 = kxy, k ∈ ℝ ← निकाय पृष्ठ

\(\rm k=\frac{z^2}{xy}=f(x,y,z)\) ........(i)

अब, हम इसे लग्रांज समीकरण का उपयोग करके हल करेंगे -

(स्मरण करें: Pp + Qq = R)

\(\rm \frac{\partial f}{\partial x}=\frac{z^2}{y}\left(-\frac{1}{x^2}\right)=\frac{-z^2}{x^2y}\)

\(\rm \frac{\partial f}{\partial y}=\frac{z^2}{x}\left(-\frac{1}{y^2}\right)=\frac{-z^2}{xy^2}\)

\(\rm \frac{\partial f}{\partial z}=\frac{2z}{xy}\)

इसलिए, \(\rm \frac{\partial f}{\partial x}p+\rm \frac{\partial f}{\partial y}q=\rm \frac{\partial f}{\partial z}\) (p = zx, q = zy)

\(\rm\left(\frac{-z^2}{x^2y}\right)p+\rm\left(\frac{-z^2}{xy^2}\right)q=\frac{\partial f}{\partial z}=\frac{2z}{xy}\)

\(\rm -\frac{z}{xy}\left[\frac{z}{x}p+\frac{z}{y}q\right]=\frac{z}{xy}[2]\)

\(\rm \frac{z}{x}p+\frac{z}{y}q=-2\)

⇒ (zy)p + (xz)q = -2xy (LCM लेने पर) (ii)

(zy)p → P

(xz)q → Q

-2xy → R

इसलिए, लग्रांज समीकरण से -

\(\rm \frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}\)

\(\rm ⇒ \frac{dx}{zy}=\frac{dy}{zx}=\frac{dz}{(-2xy)}\)

अब,

\(\rm\frac{dx}{zy}=\frac{dy}{zx}\)

⇒ x dx = y dy

समाकलन करने पर

\(\rm \frac{x^2}{2}=\frac{y^2}{2}+c\)

⇒ x2 - y2 = c1

\(\rm \frac{dx}{zy}=\frac{-dz}{2xy}\)

⇒ 2x dx = -z dz

समाकलन करने पर

\(\rm x^2=\frac{-z^2}{2}+c\)

⇒ 2x2 + z2 = c2

इसलिए, सामान्य हल होगा ϕ (c1, c2) = 0

⇒ ϕ (x2 - y2, 2x2 + z2) = 0 ⇒ विकल्प (3) सही है।

हल का अन्य संभावित रूप और जब c1 और c2 की गणना की जाती है।

ϕ(c1, c2), c1 = ϕ(c2), c2 = ϕ(c2), \(\rm \frac{c_1}{2}=\phi(c_2)\)...

Latest CSIR NET Updates

Last updated on Jul 8, 2025

-> The CSIR NET June 2025 Exam Schedule has been released on its official website.The exam will be held on 28th July 2025.

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Partial Differential Equations Questions

Get Free Access Now
Hot Links: teen patti stars teen patti master teen patti lucky teen patti rules