Question
Download Solution PDFसमतलों के निम्न कुल z2 = kxy, k ∈ \(\mathbb{R}\) के लंबवत समतलों का सामान्य हल है
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFव्याख्या:
दिया गया है z2 = kxy, k ∈ ℝ ← निकाय पृष्ठ
⇒ \(\rm k=\frac{z^2}{xy}=f(x,y,z)\) ........(i)
अब, हम इसे लग्रांज समीकरण का उपयोग करके हल करेंगे -
(स्मरण करें: Pp + Qq = R)
\(\rm \frac{\partial f}{\partial x}=\frac{z^2}{y}\left(-\frac{1}{x^2}\right)=\frac{-z^2}{x^2y}\)
\(\rm \frac{\partial f}{\partial y}=\frac{z^2}{x}\left(-\frac{1}{y^2}\right)=\frac{-z^2}{xy^2}\)
\(\rm \frac{\partial f}{\partial z}=\frac{2z}{xy}\)
इसलिए, \(\rm \frac{\partial f}{\partial x}p+\rm \frac{\partial f}{\partial y}q=\rm \frac{\partial f}{\partial z}\) (p = zx, q = zy)
⇒ \(\rm\left(\frac{-z^2}{x^2y}\right)p+\rm\left(\frac{-z^2}{xy^2}\right)q=\frac{\partial f}{\partial z}=\frac{2z}{xy}\)
⇒ \(\rm -\frac{z}{xy}\left[\frac{z}{x}p+\frac{z}{y}q\right]=\frac{z}{xy}[2]\)
⇒ \(\rm \frac{z}{x}p+\frac{z}{y}q=-2\)
⇒ (zy)p + (xz)q = -2xy (LCM लेने पर) (ii)
(zy)p → P
(xz)q → Q
-2xy → R
इसलिए, लग्रांज समीकरण से -
\(\rm \frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}\)
\(\rm ⇒ \frac{dx}{zy}=\frac{dy}{zx}=\frac{dz}{(-2xy)}\)
अब,
\(\rm\frac{dx}{zy}=\frac{dy}{zx}\)
⇒ x dx = y dy
समाकलन करने पर
\(\rm \frac{x^2}{2}=\frac{y^2}{2}+c\)
⇒ x2 - y2 = c1
\(\rm \frac{dx}{zy}=\frac{-dz}{2xy}\)
⇒ 2x dx = -z dz
समाकलन करने पर
\(\rm x^2=\frac{-z^2}{2}+c\)
⇒ 2x2 + z2 = c2
इसलिए, सामान्य हल होगा ϕ (c1, c2) = 0
⇒ ϕ (x2 - y2, 2x2 + z2) = 0 ⇒ विकल्प (3) सही है।
हल का अन्य संभावित रूप और जब c1 और c2 की गणना की जाती है।
ϕ(c1, c2), c1 = ϕ(c2), c2 = ϕ(c2), \(\rm \frac{c_1}{2}=\phi(c_2)\)...
Last updated on Jul 8, 2025
-> The CSIR NET June 2025 Exam Schedule has been released on its official website.The exam will be held on 28th July 2025.
-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences.
-> Postgraduates in the relevant streams can apply for this exam.
-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.