x = \(\frac{2 \sin \theta}{(1+\cos \theta+\sin \theta)}\) எனில், \(\frac{1-\cos \theta+\sin \theta}{(1+\sin \theta)}\) இன் மதிப்பு என்ன?

This question was previously asked in
SSC CPO 2022 Tier-I Official Paper (Held On : 9 Nov 2022 Shift 1) [Answer Key]
View all SSC CPO Papers >
  1. \(\frac{x}{(1+x)}\)
  2. x
  3. \(\frac{1}{\mathrm{x}}\)
  4. \(\frac{(1+x)}{x}\)

Answer (Detailed Solution Below)

Option 2 : x
Free
SSC CPO : General Intelligence & Reasoning Sectional Test 1
8.5 K Users
50 Questions 50 Marks 35 Mins

Detailed Solution

Download Solution PDF

கொடுக்கப்பட்டது:

\(x=\frac{2 \sin \theta}{(1+\cos \theta+\sin \theta)}\)

கணக்கீடு:

நமக்கு, \(x=\frac{2 \sin \theta}{(1+\cos \theta+\sin \theta)}\) உள்ளது.

θ = 45° என்க

⇒ x = \(\frac{2 \times \frac{1}{\sqrt2}}{1 + \frac{1}{\sqrt2}+\frac{1}{\sqrt2}}\)

x = \(\frac{\sqrt2}{1 + \frac{2}{\sqrt2}}\) = \(\frac{\sqrt2}{1 + \sqrt2}\)

இப்போது, \(\frac{1-\cos \theta+\sin \theta}{(1+\sin \theta)}\) க்கு

மேற்கண்ட கூற்றுவில் θ இன் மதிப்பைப் பிரதியிட்டால்,

\(\frac{1-\frac{1}{\sqrt2}+\frac{1}{\sqrt2}}{1+\frac{1}{\sqrt2}}\)

\(\frac{1}{\frac{\sqrt2+1}{\sqrt2}}\)

\(\frac{\sqrt2}{1+\sqrt2}\) = x

∴ விடை x.

Alternate Method  \( ⇒ {\rm{\;}}\frac{{1 - {\rm{cos\;\theta \;}} + \sin {\rm{\theta }}}}{{1 + {\rm{\;}}\sin {\rm{\theta }}}} = \;\frac{{1 - cos\;\theta \; + \sin \theta }}{{1 + \;\sin \theta }} \times \frac{{1 + {\rm{cos\;\theta \;}} + \sin {\rm{\theta }}}}{{1 + {\rm{cos\;\theta \;}} + \sin {\rm{\theta }}}}\)

\( = \frac{{{{\left( {1 + \sin {\rm{\theta }}} \right)}^2} - {\rm{co}}{{\rm{s}}^{2{\rm{\;}}}}{\rm{\theta }}}}{{(1 + \sin {\rm{\theta }})(1 + \cos {\rm{\theta }} + \sin {\rm{\;\theta }})}}\)

\( = \frac{{(1 + \sin {\rm{\theta }})(1 + \sin {\rm{\theta }}) - (1 + \sin {\rm{\theta }})(1 - \sin {\rm{\theta }})}}{{(1 + \sin {\rm{\theta }})(1 + \cos {\rm{\theta }} + \sin {\rm{\;\theta }})}}\)

\(= \frac{{(1 + \sin {\rm{\theta }})[(1 + \sin {\rm{\theta }}) - {\rm{\;}}(1 - \sin {\rm{\theta }})]}}{{(1 + \sin {\rm{\theta }})(1 + \cos {\rm{\theta }} + \sin {\rm{\;\theta }})}} = \frac{{2\sin {\rm{\theta }}}}{{(1 + \cos {\rm{\theta }} + \sin {\rm{\theta }}}} = x\)

Latest SSC CPO Updates

Last updated on Jun 17, 2025

-> The SSC has now postponed the SSC CPO Recruitment 2025 on 16th June 2025. As per the notice, the detailed notification will be released in due course.  

-> The Application Dates will be rescheduled in the notification. 

-> The selection process for SSC CPO includes a Tier 1, Physical Standard Test (PST)/ Physical Endurance Test (PET), Tier 2, and Medical Test.

-> The salary of the candidates who will get successful selection for the CPO post will be from ₹35,400 to ₹112,400.     

-> Prepare well for the exam by solving SSC CPO Previous Year Papers. Also, attempt the SSC CPO Mock Tests

-> Attempt SSC CPO Free English Mock Tests Here!

Get Free Access Now
Hot Links: teen patti master purana teen patti bodhi teen patti apk teen patti club