Suppose \(\rm \mathop v\limits^ \to = 2\hat i + \hat j - \hat k\)  and \(\rm \mathop w\limits^ \to = \hat i + 3\hat k\). If \(\rm \mathop u\limits^ \to \) is unit vector, then the maximum value of scalar triple product \(\rm \left[ {\mathop u\limits^ \to \mathop v\limits^ \to \mathop w\limits^ \to } \right]\) is -

This question was previously asked in
Rajasthan Gram Vikas Adhikari (VDO) 27 Dec 2021 Shift 1 Official Paper
View all Rajasthan Gram Vikas Adhikari Papers >
  1. \(\sqrt{10} + \sqrt{6}\)
  2. \(\sqrt{59}\)
  3. -1
  4. \(\sqrt{6}\)

Answer (Detailed Solution Below)

Option 2 : \(\sqrt{59}\)
Free
Rajasthan Gram Vikas Adhikari (VDO) : Full Mock Test
29.6 K Users
120 Questions 100 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

Scalar Triple Product: 

If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\)

\(\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) and,

\(\vec c = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k\)

Then their scalar triple product is defined as,

\(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| = \left[ {a\;b\;c} \right]\)

Calculation:

Given:

We have,

\(\rm \mathop v\limits^ \to = 2\hat i + \hat j - \hat k\)

\(\rm \mathop w\limits^ \to = \hat i + 3\hat k\)

\(\rm \vec v \times \vec w = \begin{bmatrix} \hat i & \hat j & \hat k \\\ 2 & 1 & -1 \\\ 1 & 0 & 3 \end{bmatrix}\)

\(\Rightarrow \vec v \times \vec w = \hat i (3) - \hat j (7) + \hat k (-1)\)

\(\rm \Rightarrow \vec v \times \vec w = 3\hat i - 7\hat j - \hat k \)

Now, \(\rm \vec u . (\vec v \times \vec w) = | \vec u| |(3\hat i - 7\hat j - \hat k )| \cos θ \)

If \(\rm \mathop u\limits^ \to \) is a unit vector so, 

\(\rm \vec u . (\vec v \times \vec w) = 1 |(3\hat i - 7\hat j - \hat k )| \cos θ \)

When, θ = 0°

Maximum value = \(\sqrt{3^2 +(-7)^2 + (-1)^2 } = \sqrt{59}\)

Latest Rajasthan Gram Vikas Adhikari Updates

Last updated on Jul 18, 2025

->The Rajasthan Gram Vikas Adhikari Vacancy 2025 Application Deadline is Extended. The last date to apply online is 25th July 2025.

-> A total of 850 vacancies are out for the recruitment.

-> Eligible candidates can apply online from 19th June to 25th July 2025.

-> The written test will be conducted on 31st August 2025.

->The RSMSSB VDO Selection Process consists of two stages i.e, Written Examination and Document Verification.

->Candidates who are interested to prepare for the examination can refer to the Rajasthan Gram Vikas Adhikari Previous Year Question Paper here!

More Scalar Triple Product Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti master 51 bonus teen patti list teen patti sweet teen patti 3a