\(arg (\frac{(1\ + \ \sqrt 3 i)(\sqrt 3\ + \ i)}{1\ +\ i})\) का मान क्या होगा?

  1. \(\frac{\pi}{2}\)
  2. \(\frac{\pi}{3}\)
  3. \(\frac{\pi}{4}\)
  4. \(\frac{\pi}{6}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{\pi}{4}\)
Free
NDA 01/2025: English Subject Test
5.7 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

अवधारणा:

सम्मिश्र संख्याएँ: एक सम्मिश्र संख्या z = a + ib के लिए निम्नलिखित परिभाषित हैं:

arg(z) = θ = \(\rm\tan^{-1}\left(b\over a\right)\)

तर्क के गुण:

माना कि z, z1 और z2 तीन सम्मिश्र संख्याएँ हैं। तो

1. \(\arg \left( {\bar z\;} \right) = \; - \arg z\)

2. arg (z1 ⋅ z2) = arg (z1) + arg (z2)

3. \(\arg \left( {{z_1} \cdot \overline {{z_2}} } \right) = \arg {z_1} - \arg {z_2}\)

4. arg (zn) = n ⋅ arg (z)

5. arg (z1 / z2) = arg (z1) – arg(z2)

6. शून्य का तर्क परिभाषित नहीं है

7. यदि arg (z) = 0 ⇒ z वास्तविक है

गणना:

माना,

\(arg (\frac{(1\ + \ √ 3 i)(√ 3\ + \ i)}{1\ +\ i})\ =\ θ \)    ----(1)

∵ arg (z1 / z2) = arg (z1) – arg(z2)

⇒ θ = arg(1 + √3i)(√3 + i) - arg(1 + i) 

∵ arg (z1 ⋅ z2) = arg (z1) + arg (z2)

⇒ θ = arg(1 + √3i) + arg(√3 + i) - arg(1 + i)

\(\Rightarrow\ \theta \ = \ tan^{-1}(\frac{\sqrt 3}{1})\ +\ tan^{-1}(\frac{1}{\sqrt 3})\ -\ tan^{-1}(1)\)

\(\Rightarrow\ \theta \ = \ (\frac{\pi}{3})\ +\ (\frac{\pi}{6})\ -\ (\frac{\pi}{4})\)

\(\Rightarrow\ \theta \ = \ (\frac{\pi}{4})\)

अत: विकल्प 3 सही है।

Latest NDA Updates

Last updated on Jul 7, 2025

->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.

->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: teen patti teen patti party teen patti master new version teen patti gold new version