Question
Download Solution PDF\(arg (\frac{(1\ + \ \sqrt 3 i)(\sqrt 3\ + \ i)}{1\ +\ i})\) का मान क्या होगा?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFअवधारणा:
सम्मिश्र संख्याएँ: एक सम्मिश्र संख्या z = a + ib के लिए निम्नलिखित परिभाषित हैं:
arg(z) = θ = \(\rm\tan^{-1}\left(b\over a\right)\)
तर्क के गुण:
माना कि z, z1 और z2 तीन सम्मिश्र संख्याएँ हैं। तो
1. \(\arg \left( {\bar z\;} \right) = \; - \arg z\)
2. arg (z1 ⋅ z2) = arg (z1) + arg (z2)
3. \(\arg \left( {{z_1} \cdot \overline {{z_2}} } \right) = \arg {z_1} - \arg {z_2}\)
4. arg (zn) = n ⋅ arg (z)
5. arg (z1 / z2) = arg (z1) – arg(z2)
6. शून्य का तर्क परिभाषित नहीं है
7. यदि arg (z) = 0 ⇒ z वास्तविक है
गणना:
माना,
\(arg (\frac{(1\ + \ √ 3 i)(√ 3\ + \ i)}{1\ +\ i})\ =\ θ \) ----(1)
∵ arg (z1 / z2) = arg (z1) – arg(z2)
⇒ θ = arg(1 + √3i)(√3 + i) - arg(1 + i)
∵ arg (z1 ⋅ z2) = arg (z1) + arg (z2)
⇒ θ = arg(1 + √3i) + arg(√3 + i) - arg(1 + i)
\(\Rightarrow\ \theta \ = \ tan^{-1}(\frac{\sqrt 3}{1})\ +\ tan^{-1}(\frac{1}{\sqrt 3})\ -\ tan^{-1}(1)\)
\(\Rightarrow\ \theta \ = \ (\frac{\pi}{3})\ +\ (\frac{\pi}{6})\ -\ (\frac{\pi}{4})\)
\(\Rightarrow\ \theta \ = \ (\frac{\pi}{4})\)
अत: विकल्प 3 सही है।
Last updated on Jul 7, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.