\(\rm \frac{dx}{dy} = (1+x^2)(1+y^2)\) का सामान्य हल ज्ञात कीजिए। 

  1. \(\rm \tan^{-1}y = x+\frac{x^3}{3} + c\)
  2. \(\rm y+\frac{y^3}{3} = \tan^{-1}x + c\)
  3. \(\rm \tan^{-1}y =\tan^{-1}x+ c\)
  4. उपरोक्त में से कोई नहीं 

Answer (Detailed Solution Below)

Option 2 : \(\rm y+\frac{y^3}{3} = \tan^{-1}x + c\)
Free
Army Havildar SAC - Quick Quiz
1.9 K Users
5 Questions 10 Marks 6 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

\(\rm \int \frac{1}{a^2+x^2}dx = \frac{1}{a}\tan^{-1}\frac{x}{a} + c\)

\(\rm \int x^ndx = \frac{x^{n+1}}{n+1} + c\)

 

गणना:

दिया गया है: \(\rm \frac{dx}{dy} = (1+x^2)(1+y^2)\)

\(\rm \Rightarrow \frac{dx}{(1+x^2)} = (1+y^2)dy\)

\(\rm \Rightarrow (1+y^2)dy=\frac{dx}{(1+x^2)} \)

दोनों पक्षों का समाकलन करने पर, हमें निम्न प्राप्त होता है 

\(\rm \Rightarrow \int (1+y^2)dy=\int \frac{dx}{(1+x^2)} \)

\(\rm \Rightarrow y+\frac{y^3}{3} = \tan^{-1}x + c\)

Latest Army Havildar SAC Updates

Last updated on Jul 1, 2025

-> The Indian Army has released the Exam Date for Indian Army Havildar SAC (Surveyor Automated Cartographer).

->The Exam will be held on 9th July 2025.

-> Interested candidates had applied online from 13th March to 25th April 2025.

-> Candidates within the age of 25 years having specific education qualifications are eligible to apply for the exam.

-> The candidates must go through the Indian Army Havildar SAC Eligibility Criteria to know about the required qualification in detail. 

More Solution of Differential Equations Questions

Get Free Access Now
Hot Links: teen patti vungo teen patti casino teen patti gold new version online teen patti teen patti fun