Trigonometric Function MCQ Quiz in తెలుగు - Objective Question with Answer for Trigonometric Function - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Apr 29, 2025

పొందండి Trigonometric Function సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Trigonometric Function MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Trigonometric Function MCQ Objective Questions

Trigonometric Function Question 1:

\(\lim _{x \rightarrow 0} \frac{1-\cos x \cos 2 x}{\sin ^2 x}=\)

  1. \(\frac{11}{4}\)
  2. \(\frac{5}{2}\)
  3. 3
  4. 5

Answer (Detailed Solution Below)

Option 2 : \(\frac{5}{2}\)

Trigonometric Function Question 1 Detailed Solution

Trigonometric Function Question 2:

\(\displaystyle\lim _{\theta \rightarrow \frac{\pi}{2}^{-}} \frac{8 \tan ^4 \theta+4 \tan ^2 \theta+5}{(3-2 \tan \theta)^4}=\)

  1. \(-\frac{1}{2}\)
  2. \(\frac{1}{2}\)
  3. -4
  4. 1

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{2}\)

Trigonometric Function Question 2 Detailed Solution

Trigonometric Function Question 3:

\(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \cdot \sin 5 x}{x^2 \sin 3 x}\) విలువ

  1. \(\frac{10}{3}\)
  2. \(\frac{5}{3}\)
  3. \(\frac{5}{6}\)
  4. \(\frac{2}{3}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{10}{3}\)

Trigonometric Function Question 3 Detailed Solution

గణన:

ఇచ్చినది, \(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \sin 5 x}{x^2 \sin 3 x}\)

= \(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \sin 5 x \cdot x}{x^3 \cdot \sin 3 x}\)

= \(\lim _{x \rightarrow 0} \frac{2 \sin ^2 x}{x^2} \cdot \frac{\sin 5 x}{x} \cdot \frac{x}{\sin 3 x}\)

= \(2\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)^2 \cdot 5\left(\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x}\right) \cdot \frac{1}{3}\left(\frac{1}{\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}}\right)\)

= 2 x 1 x 5 x 1 x \(\frac{1}{3}\) x 1

= \(\frac{10}{3}\)

కాబట్టి, పరిమితి విలువ \(\frac{10}{3}\).

సరైన సమాధానం ఎంపిక 1.

Top Trigonometric Function MCQ Objective Questions

Trigonometric Function Question 4:

\(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \cdot \sin 5 x}{x^2 \sin 3 x}\) విలువ

  1. \(\frac{10}{3}\)
  2. \(\frac{5}{3}\)
  3. \(\frac{5}{6}\)
  4. \(\frac{2}{3}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{10}{3}\)

Trigonometric Function Question 4 Detailed Solution

గణన:

ఇచ్చినది, \(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \sin 5 x}{x^2 \sin 3 x}\)

= \(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \sin 5 x \cdot x}{x^3 \cdot \sin 3 x}\)

= \(\lim _{x \rightarrow 0} \frac{2 \sin ^2 x}{x^2} \cdot \frac{\sin 5 x}{x} \cdot \frac{x}{\sin 3 x}\)

= \(2\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)^2 \cdot 5\left(\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x}\right) \cdot \frac{1}{3}\left(\frac{1}{\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}}\right)\)

= 2 x 1 x 5 x 1 x \(\frac{1}{3}\) x 1

= \(\frac{10}{3}\)

కాబట్టి, పరిమితి విలువ \(\frac{10}{3}\).

సరైన సమాధానం ఎంపిక 1.

Trigonometric Function Question 5:

\(\lim _{x \rightarrow 0} \frac{1-\cos x \cos 2 x}{\sin ^2 x}=\)

  1. \(\frac{11}{4}\)
  2. \(\frac{5}{2}\)
  3. 3
  4. 5

Answer (Detailed Solution Below)

Option 2 : \(\frac{5}{2}\)

Trigonometric Function Question 5 Detailed Solution

Trigonometric Function Question 6:

\(\displaystyle\lim _{\theta \rightarrow \frac{\pi}{2}^{-}} \frac{8 \tan ^4 \theta+4 \tan ^2 \theta+5}{(3-2 \tan \theta)^4}=\)

  1. \(-\frac{1}{2}\)
  2. \(\frac{1}{2}\)
  3. -4
  4. 1

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{2}\)

Trigonometric Function Question 6 Detailed Solution

Get Free Access Now
Hot Links: online teen patti teen patti real cash game teen patti bonus teen patti customer care number