Sequences & Series (Convergence) MCQ Quiz in తెలుగు - Objective Question with Answer for Sequences & Series (Convergence) - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 19, 2025

పొందండి Sequences & Series (Convergence) సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Sequences & Series (Convergence) MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Sequences & Series (Convergence) MCQ Objective Questions

Top Sequences & Series (Convergence) MCQ Objective Questions

Sequences & Series (Convergence) Question 1:

Which of the following is convergent series

  1. \( \Sigma_{n = 1}^ \infty \cos \left(\frac{1}{n}\right) \)
  2. \(\sqrt[7]{\frac{1}{1+1}} + \sqrt[7]{\frac{2}{2+1}} + \sqrt[7]{\frac{3}{3+1}} + .... + \sqrt[7]{\frac{n}{n+1}}+ ... \)
  3. \(\sum_{n = 1}^ \infty \left( n \log \left(\frac{3 n+2}{3 n-2}\right)-1 \right)\)
  4. None of the above

Answer (Detailed Solution Below)

Option 4 : None of the above

Sequences & Series (Convergence) Question 1 Detailed Solution

Concept:

The necessary condition of convergent series \(\sum u_n\) is  \(\lim_{n\to \infty}u_n=0\).

If \(\lim_{n\to \infty}u_n\neq 0\) then the series \(\sum u_n\) is divergent. 

Explanation:

(1) Let un = cos \(\left( \frac{1}{n} \right)\)

\( \Rightarrow \lim _{n \rightarrow \infty} u_n=\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n}\right) \) = cos 0 = 1 ≠ 0

\( \Sigma \cos \left(\frac{1}{n}\right) \) is divergent.

(2) Let \( u_n=\sqrt[7]{\frac{n}{n+1}} \)

∴ \( \lim _{n \rightarrow \infty} u_n=\lim _{n \rightarrow \infty} \sqrt[7]{\frac{n}{n+1}}\) = \(\lim _{n \rightarrow \infty} \sqrt[7]{\frac{n}{1+\frac{1}{n}}} \)

\(=\left(\frac{1}{1+0}\right)^{1 / 7}\) = 1 ≠ 0 

Hence ∑un is divergent.

(3) Let \( u_n=n \log \left(\frac{3 n+2}{3 n-2}\right)-1 \)

∴ \(\lim _{n \rightarrow \infty} u_n\) = \(\lim _{n \rightarrow \infty} n \log \left(\frac{3 n+2}{3n -2}\right)\) - 1

 \(=\lim _{n \rightarrow \infty} n \log \left(\frac{1+\frac{2}{3n}}{1 -\frac{2}{3n}}\right)\) - 1

\(=\lim _{n \rightarrow \infty} n \Big[\log(1+\frac{2}{3n}) - \log(1-\frac{2}{3n})\Big]\) - 1

\(=\lim_{n\to\infty}n\Big[2\Big(\frac{2}{3n}+\frac{8}{3\cdot27n^3}+....\Big)\Big]\) - 1

\(=\lim _{n\to \infty}\Big(\frac{4}{3}+\frac{16}{81n^2}+.....\Big)\) - 1

= (\(\frac{4}{3}\) +0 + 0 + .... + 0) - 1

= 1/3 ≠ 0

∴ ∑ un is divergent.

Hence option (4) is correct

Sequences & Series (Convergence) Question 2:

Let \(\{a_n\} \) be a sequence defined by

\(a_n = \frac{(-1)^n n^{1/3}}{(2^n + n)} \) and consider the infinite series \(\sum_{n=1}^{\infty} a_n \)  then 

  1. \(\sum_{n=1}^{\infty} a_n \) Converges Absolutely.
  2. \(\sum_{n=1}^{\infty} a_n \) Diverges.
  3. \(\sum_{n=1}^{\infty} a_n \)  oscillatory.
  4. None of these .

Answer (Detailed Solution Below)

Option 1 : \(\sum_{n=1}^{\infty} a_n \) Converges Absolutely.

Sequences & Series (Convergence) Question 2 Detailed Solution

Concept:

Root Test :

To apply the root test, we need to evaluate

 \(\lim_{n \to \infty} \sqrt[n]{|a_n|}. \)

If this limit is less than 1, the series converges absolutely;

if it is greater than 1, the series diverges;

and if it equals 1, the root test is inconclusive.

Explanation: 
   
Given :  \(|a_n| = \frac{n^{1/3}}{2^n + n}. \)
   

 Apply the root test:
   
 \(\lim_{n \to \infty} \sqrt[n]{|a_n|} \) =  \(\lim_{n \to \infty} \sqrt[n]{\frac{n^{1/3}}{2^n + n}} \) .
   
This expression can be simplified by breaking it into two parts:
   
   \(\sqrt[n]{|a_n|} \)  = \(\frac{\sqrt[n]{n^{1/3}}}{\sqrt[n]{2^n + n}} \) .
   

Evaluate  \(\lim_{n \to \infty} \sqrt[n]{n^{1/3}} \) :


Since  \(n^{1/3} \) grows very slowly compared to exponential terms,
   
 \( \lim_{n \to \infty} \sqrt[n]{n^{1/3}} \) =  \(\lim_{n \to \infty} \left(n^{1/3}\right)^{1/n} \) = 1.
   

Evaluate \( \lim_{n \to \infty} \sqrt[n]{2^n + n} \) :


Since \( 2^n \)  dominates n as \( n \to \infty \), we have
   

 \(\lim_{n \to \infty} \sqrt[n]{2^n + n} \) =  \(\lim_{n \to \infty} \sqrt[n]{2^n} \) =  \(\lim_{n \to \infty} 2 \) = 2.
   

Now,  \(\lim_{n \to \infty} \sqrt[n]{|a_n|} \)  =  \(\frac{1}{2}. \)
   

Since \( \lim_{n \to \infty} \sqrt[n]{|a_n|} \) =  \(\frac{1}{2} \) < 1,

the series \( \sum_{n=1}^{\infty} a_n \)  converges absolutely by the root test.

Hence Option(1) is the correct answer.

Sequences & Series (Convergence) Question 3:

What is the sum of the following series?

\(\left( \frac{ 1 }{2.3 }+\frac{ 1}{2^2.3 } \right)+ \left(\frac{ 1 }{ 2^2.3^2 }+\frac{1 }{ 2^3.3^2} \right)+...+ \left( \frac{ 1 }{ 2^a.3^a } +\frac{1 }{ 2^{a+1}.3^a } \right)+...\)

  1. \(\frac{3 }{8 }\)
  2. \(\frac{ 3 }{10 }\)
  3. \(\frac{3 }{ 14 }\)
  4. \(\frac{3 }{16 }\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{ 3 }{10 }\)

Sequences & Series (Convergence) Question 3 Detailed Solution

Explanation: 

Let

S = \((\frac{1}{2.3}+\frac{1}{2^2.3})+(\frac{1}{2^2.3^2}+\frac{1}{2^3.3^2})+........(\frac{1}{2^a.3^a}+\frac{1}{2^a+1.3^a})\) 

After rearranging the first and second terms of each series, we get, 
\((\frac{1}{2.3}+\frac{1}{2^23^2}+.....\frac{1}{2^a3^a})+\frac{1}{2}(\frac{1}{2.3}+\frac{1}{2^23^2}+....\frac{1}{2^a3^a})+...\)

\((1+\frac{1}{2})(\frac{1}{2.3}+\frac{1}{2^2.3^2}+...+\frac{1}{2^a3^a}+...)\)

\(\frac{3}{2}(\frac{1}{2.3}+\frac{1}{2^2.3^2}+...+\frac{1}{2^a3^a}+...)\)

Here we can see that \(\frac{3}{2}(\frac{1}{2.3}+\frac{1}{2^2.3^2}+...+\frac{1}{2^a3^a}+...)\) is geometric series with a= \(\frac{1}{2.3}=\frac{1}{6}\) and r = \(\frac{1}{2.3}=\frac{1}{6}\) < 1.

We know that the sum of infinite geometric series is  \(\frac{a}{1-r}\), r < 1

Hence the sum of the given series is 

S = \(\frac{3}{2}.\frac{a}{1-r} = \frac32. \frac{\frac{1}{6}}{1-\frac{1}{6}}=\frac32.\frac15=\frac3{10}\)

∴ The sum of the series is 3/10.

Sequences & Series (Convergence) Question 4:

The sum of the infinite series

\(S=\frac{1}{2}-\frac{1}{3 \times 1 !}+\frac{1}{4 \times 2 !}-\frac{1}{5 \times 3 !}+\cdots\)

is equal to

  1. \(2-\frac{1}{e}\)
  2. \(1-\frac{2}{e}\)
  3. \(\frac{2}{e}-1\)
  4. \(\frac{1}{e}-2\)

Answer (Detailed Solution Below)

Option 2 : \(1-\frac{2}{e}\)

Sequences & Series (Convergence) Question 4 Detailed Solution

Explanation:

\(S=\frac{1}{2}-\frac{1}{3 \times 1 !}+\frac{1}{4 \times 2 !}-\frac{1}{5 \times 3 !}+\cdots\)

   = \(\sum_{n=0}^{\infty}\frac{(-1)^n}{(n+2)n!}\)

   = \(\sum_{n=0}^{\infty}\frac{(-1)^n(n+1)}{(n+2)!}\)

   = \(\sum_{n=0}^{\infty}(-1)^n\left[\frac{(n+2)}{(n+2)!}-\frac{1}{(n+2)!}\right]\)

   = \(\sum_{n=0}^{\infty}\frac{(-1)^n}{(n+1)!}-\sum_{n=0}^{\infty}\frac{(-1)^n}{(n+2)!}\)

   = \((1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+...)-(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...)\)

  = 1 - e-1- e-1 (as \((\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...)=e^{-1}\))

   =1- 2e-1 = 1 - (2/e)

Option (2) is true

Sequences & Series (Convergence) Question 5:

Let {\(a_n\)} be the sequence of positive real numbers satisfying 

\(\frac{4}{a_{n+1}} = \frac{3}{a_{n}} + \frac{a_{n}^3}{81} \\\) ,  \( a_{1} = 1 \)  and \(n \geq 1 \).

Then all the terms of the sequence lie in 

 

  1. [1,2]
  2. [0,1]
  3. [1,3]
  4. [0,0.5]

Answer (Detailed Solution Below)

Option 3 : [1,3]

Sequences & Series (Convergence) Question 5 Detailed Solution

Given: 

\(\frac{4}{a_{n+1}} = \frac{3}{a_n} + \frac{a_n^3}{81}, \quad a_1 = 1.\)

This can be rewritten as:

\(\frac{4}{a_{n+1}} = {\frac{3}{a_n} + \frac{a_n^3}{81}} = \frac{243 + a_n^4} {81 a_n}\) .

⇒ \(a_{n+1}=\frac{324 a_n}{243 + a_n^4} \)

Thus, we have:

\(a_{2} = \frac{324}{243 + 1}\) = \(\frac{324}{244} \) > 1.

Let \(a_{n+1} \)  is an increasing.

Let \(a_{n+1} \) =y and \( a_n \)=x ,then 

y = \(\frac{324 x}{243 + x^4}\) .

To check if y is an increasing function, we calculate \(\frac{dy}{dx} \) :

\(\frac{dy}{dx} \)  =  \(\frac{(243 + x^4)(324) - (324)(4x^3)}{(243 + x^4)^2} \) .

For y to be increasing, we need  \(\frac{dy}{dx} \) > 0, so

\(\frac{dy}{dx} \) =  \(\frac{(243 + x^4)(324) - (324)(4x^3)}{(243 + x^4)^2} \) >0 

⇒ \(243- 3 x^4 >0\)

⇒ \(x^4 < 81\)

⇒ \(x \in (-3,3) \)

Therefore, y is a increasing function for  \(x \in (-3,3) \).

since  \(a_1 \)= 1 and  \(a_n \) = 3 

Limit of  \( a_n\) = [1,3].

Hence Option 3 is the correct answer.

Sequences & Series (Convergence) Question 6:

Consider the following infinite series: 

(a) \(\displaystyle \sum_{n=1}^{\infty} \frac{\sin (n \pi / 2)}{\sqrt{n}}\), (b) \(\displaystyle \sum_{n=1}^{\infty} \log \left(1+\frac{1}{n^2}\right).\)

Which one of the following statements is true? 

  1. (a) is convergent, but (b) is not convergent.  
  2. (a) is not convergent, but (b) is convergent.  
  3. Both (a) and (b) are convergent. 
  4. Neither (a) nor (b) is convergent. 

Answer (Detailed Solution Below)

Option 3 : Both (a) and (b) are convergent. 

Sequences & Series (Convergence) Question 6 Detailed Solution

Concept:

Dirichlet’s test: Let ∑ an be infinite series such that the series of partial sum Sn = a1 + a2 + ... + an is bounded. let {bn} be a monotonically decreasing infinite sequence that converges to zero. Then ∑ anbn converges to some finite value.

Limit comparasion test: Let ∑ an and ∑ bn be two series of positive term and c = \(\displaystyle\lim_{n\to\infty}{a_n\over b_n}\) ≠ 0 and finite then ∑ an and ∑ bn converges and diverges together.

Explanation

(a): \(\displaystyle ∑_{n=1}^{\infty} \frac{\sin (n \pi / 2)}{\sqrt{n}}\)

Here \(∑ \sin ({n\pi\over 2})\) has bounded series of partial sum 

and \(\left\{\frac1{\sqrt n}\right\}\) is a sequence of monotonically decreasing sequence converges to 0

Then by Drichlet's test \(\displaystyle ∑_{n=1}^{\infty} \frac{\sin (n \pi / 2)}{\sqrt{n}}\) is convergent

(a) is convergent

(b): \(\displaystyle ∑_{n=1}^{\infty} \log \left(1+\frac{1}{n^2}\right).\)

Let an\( \log \left(1+\frac{1}{n^2}\right)\) and bn\(\frac1{n^2}\)

Then \(\displaystyle\lim_{n\to\infty}{a_n\over b_n}\) = \(\displaystyle\lim_{n\to\infty}{ \log \left(1+\frac{1}{n^2}\right)\over \frac1{n^2}}\) (0/0 form)

                      = \(\displaystyle\lim_{n\to\infty}{\frac1{1+\frac{1}{n^2}}.(-{\frac2{n^3}})\over -{\frac2{n^3}}}\) (L'hospital rule)

                   = 1 ≠ 0

So, by limit comparasion test, ∑ an and ∑ bn converges and diverges together.

Now, ∑ bn = ∑ \(\frac1{n^2}\) is convergent series by p-series test.

Hence \(\displaystyle ∑_{n=1}^{\infty} \log \left(1+\frac{1}{n^2}\right)\) is convergent

(b) is convergent

(3) is correct

Sequences & Series (Convergence) Question 7:

consider the statements

(A) Series \(\sum \operatorname{Sin}\left(\frac{1}{n}\right)\) is divergent.

(B) Series \(\frac{1}{3^2} \frac{2}{4^2}+\frac{3}{5^2} \cdot \frac{4}{6^2} \) + \(\frac{5}{7^2} \frac{6}{8^2}+\ldots\) is convergent.

Then 

  1. Both statements (A) and (B) are true.
  2. (A) is true but (B) is false.
  3. (A) is false, but (B) is true.
  4. Neither (A) nor (B) is true.

Answer (Detailed Solution Below)

Option 1 : Both statements (A) and (B) are true.

Sequences & Series (Convergence) Question 7 Detailed Solution

Concept:

(i) Limit Comparison Test : 

If, (a) an ≥ 0 and bn ≥ 0 , ∀ n

(b) \(lim_{n \rightarrow \infty} \frac{a_n}{b_n}=c\), Where c is finite positive constant.

Then, the series \(\sum_{n=1 }^{\infty} {\ a_n}\) and \(\sum_{n=1 }^{\infty} {\ b_n}\) behave alike 

(ii) p- series test :

If p > 1. Then the series \(\sum_{n=1 }^{\infty} {\frac{1}{n^p}}\) converges.

If p ≤ 1. Then the series \(\sum_{n=1 }^{\infty} {\frac{1}{n^p}}\) diverges.

Explanation:

(a) Let an=sin(\(\frac{1}{n}\)) and bn\(\frac{1}{n}\)

Now, \(lim_{n \rightarrow \infty} \frac{sin(\frac{1}{n})}{\frac{1}{n}}=1\) \(\neq\)0(finite) 

By using limit Comparison test

 \(\sum_{n=1 }^{\infty}sin {\frac{1}{n}}\) and \(\sum_{n=1 }^{\infty} {\frac{1}{n}}\) behave alike 

Now, By using p - series test \(\sum_{n=1 }^{\infty} {\frac{1}{n}}\) diverges 

⇒ \(\sum_{n=1 }^{\infty}sin {\frac{1}{n}}\) is also diverges.

(b) \(\frac{1}{3^2} \frac{2}{4^2}+\frac{3}{5^2} \cdot \frac{4}{6^2} \)+\(\frac{5}{7^2} \frac{6}{8^2}+\ldots\) = \(\sum_{n=1 }^{\infty} {\frac{(2n-1)2n}{(2n+1)^2(2n+2)^2}}\)

Let an\( {\frac{(2n-1)2n}{(2n+1)^2(2n+2)^2}}\) and bn\(\frac{1}{n^2}\)

\(lim_{n \rightarrow \infty} \frac{(2n-1).2n.n^2}{(2n+1)^2.(2n+2)^2}=\frac{1}{4}\)\(\neq\)0(finite)

By using limit Comparison test

 \(\sum_{n=1 }^{\infty} {\frac{(2n-1)2n}{(2n+1)^2(2n+2)^2}}\) and \(\sum_{n=1 }^{\infty} {\frac{1}{n^2}}\) behave alike 

Now, By using p - series test \(\sum_{n=1 }^{\infty} {\frac{1}{n^2}}\) converges. 

⇒ \(\sum_{n=1 }^{\infty} {\frac{(2n-1)2n}{(2n+1)^2(2n+2)^2}}\) is also converges.

Hence, (1) option is true

Sequences & Series (Convergence) Question 8:

limn→∞ \(\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)\) is equal to 

  1. 0
  2. 1
  3. 2
  4. loge 2

Answer (Detailed Solution Below)

Option 4 : loge 2

Sequences & Series (Convergence) Question 8 Detailed Solution

Concept:

Integral test : This test is used for series of the form \(\sum_{n=1}^{\infty} f(n)\) where f(x)  is a continuous, positive, and decreasing function for x ≥ 1 

The series converges if and only if the corresponding improper integral \(\int_{1}^{\infty}f(x) dx\) converges.

Explanation:

\(\lim_{n\rightarrow\infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)\)

Sn = \(\sum_{n=1}^{\infty} \frac{1}{n+k}\)

\(lim_{n\rightarrow \infty}\) S\(lim_{n\rightarrow \infty}\) \(\frac{1}{n}\)\(\sum_{n=1}^{\infty} \frac{1}{1+\frac{k}{n}}\) 

\(\int_{0}^{1}\frac{1}{1+x}\rm dx\)

= loge\(\)\((1+x)|_{0}^{1}\)

= loge2

Sequences & Series (Convergence) Question 9:

Let {xn} be a sequence of positive real numbers. Which of the following statements are true?

  1. If the two subsequences {x2n} and {x2n+1} converge, then the sequence {xn} converges
  2. If {(-1)nxn} converges, then the sequence {xn} converges
  3. If \(\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_n}\) exists then {(xn)1/n} is bounded
  4. If the sequence {xn} is unbounded then every subsequence is unbounded

Answer (Detailed Solution Below)

Option :

Sequences & Series (Convergence) Question 9 Detailed Solution

Explanation - If every subsequence of a sequence is convergent then sequence is convergent 

Option 1:-  Let 

\(x_n =\begin{cases} 4, \text{n is odd} \\ 0, \text{ n is even} \end{cases}\)  and  \(x_{2n} = 4 ; x_{2n+1} = 0 \)  

Here subsequence is convergent but sequence oscillate between 0 and 4 . 

Therefore , Option 1 is False.

Option 2 :- Let xn = (-1)n then  {(-1)nxn} = {1} which is converges but {xn} does not converges

\(\therefore\) Option 2 is false.

Option 3:- By Cauchy Second Theorem on limit

If \(\lim_{n\to\infty} {\frac{x_{n+1}}{x_{n}}}\) exist then \(\lim _{n\to \infty}(x_n)^{\frac{1}{n}} \) also exist

and so bounded. 

Option 3) is True.

Option 4 :- Let \(x_n =\begin{cases} 4, \text{n is prime} \\ 0, \text{elsewhere} \end{cases}\)

It is unbounded sequence but  here one subsequence is 4 which is bounded  so, Option 4 is False. 

Sequences & Series (Convergence) Question 10:

Let

\(S_1=\frac{1}{3} - \frac{1}{2} \times \frac{1}{{{3^2}}} + \frac{1}{3} \times \frac{1}{{{3^3}}} - \frac{1}{4} \times \frac{1}{{{3^4}}} + ...\)

and 

\(S_2=\frac{1}{4} + \frac{1}{2} \times \frac{1}{{{4^2}}} + \frac{1}{3} \times \frac{1}{{{4^3}}} + \frac{1}{4} \times \frac{1}{{{4^4}}} + ...\)

Which of the following identities is true?

  1. 3S1 = 4S2
  2. 4S1 = 3S2
  3. S1 + S2 = 0
  4. S1 = S2

Answer (Detailed Solution Below)

Option 4 : S1 = S2

Sequences & Series (Convergence) Question 10 Detailed Solution

Concept:

For |a| < 1, the expansion of ln(1 + a) is given by 

\(\ln(1+a) = a-\frac{a^2}{2}+\frac{a^3}{3}-\frac{a^4}{4}+\cdots,= \sum_{x = 1}^{\infty} (-1)^{x+1} \frac{a^x}{x}\)

Calculation:

We know that,

\(\ln(1+x) = x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots,\)

Substituting x by -x, we get:

\(\ln(1-a) = -a-\frac{a^2}{2}-\frac{a^3}{3}-\frac{a^4}{4}+\cdots, = -\sum_{x = 1}^{\infty} \frac{a^x}{x}\)

Now, \(S_1=\frac{1}{3} - \frac{1}{2} \times \frac{1}{{{3^2}}} + \frac{1}{3} \times \frac{1}{{{3^3}}} - \frac{1}{4} \times \frac{1}{{{3^4}}} + ...\)

⇒ \(S_1=\sum_{x=1}^{\infty}(-1)^{x+1}\frac{1}{x}\cdot\frac{1}{3^x}\)

⇒ \(S_1=\sum_{x=1}^{\infty}(-1)^{x+1}\frac{\left(\frac{1}{3^x}\right)}{x}\)

⇒ \(S_1=\sum_{x=1}^{\infty}(-1)^{x+1}\frac{\left(\frac{1}{3}\right)^x}{x}\)

⇒ \(S_1=\ln \left(1+\frac{1}{3}\right)\)

⇒ \(S_1=\ln \left(\frac{4}{3}\right)\)

Now, \(S_2=\frac{1}{4} + \frac{1}{2} \times \frac{1}{{{4^2}}} + \frac{1}{3} \times \frac{1}{{{4^3}}} + \frac{1}{4} \times \frac{1}{{{4^4}}} + ...\)

⇒ \(S_2=\sum_{x=1}^{\infty}\frac{1}{x}\cdot\frac{1}{4^x}\)

⇒ \(S_2=\sum_{x=1}^{\infty}\frac{\left(\frac{1}{4^x}\right)}{x}\)

⇒ \(S_2=\sum_{x=1}^{\infty}\frac{\left(\frac{1}{4}\right)^x}{x}\)

⇒ \(S_2=-\ln \left(1-\frac{1}{4}\right)\)

⇒ \(S_2=-\ln \left(\frac{3}{4}\right)\)

⇒ \(S_2=\ln \left(\frac{4}{3}\right)\) [∵ - ln x = ln (\(\frac{1}{x}\))]

∴ \(S_1=S_2\)

Get Free Access Now
Hot Links: teen patti real cash apk teen patti tiger teen patti bindaas