De Moivre's Theorem MCQ Quiz in తెలుగు - Objective Question with Answer for De Moivre's Theorem - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Apr 4, 2025

పొందండి De Moivre's Theorem సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి De Moivre's Theorem MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest De Moivre's Theorem MCQ Objective Questions

Top De Moivre's Theorem MCQ Objective Questions

De Moivre's Theorem Question 1:

Assume that \(A_i \, (i \, = \, 1, 2, \ldots,n)\) are the vertices of a regular n-gon inscribed in a circle of radius unity. Prove that: \(|A_1 A_2| \, |A_1 A_3| \, \ldots \, |A_1 A_n| = n\)

Answer (Detailed Solution Below) 0 - 1

De Moivre's Theorem Question 1 Detailed Solution

From part(i), \(|A_1A_r| \, = \, |z_1| \, |1 \, - \, e^{2(r-1)\pi i/n}|\)

\(= \, |1 \, - \, e^{2(r-1)\pi i/n}| \, \, \, \, \, \, [\because |z_1| \, = \, 1]\)

Hence \(|A_1A_2| \cdot |A_1A_3| \ldots |A_1A_n|\)

\(= \, |1 \, - \, e^{2 \pi i/n}||1 \, - \, e^{4 \pi i/n}|\ldots|1 \, - \, e^{2(n-1)\pi i/n}|.....(1)\)

Since \(e^{2 \pi i/n}, e^{4 \pi i/n}\ldots e^{2(n-1)\pi i/n}\) are the \(n^{th}\) roots of unity, we have the identity

\(z^n \, - \, 1 \, \equiv \, (z \, - \, 1 )(z \, - \, e^{2 \pi i/n})(z \, - \, e^{4 \pi i/n})\ldots(z \, - \, e^{2 (n-1)\pi i/n})\)

or \(\dfrac{z^n \, - \, 1 }{z \, - \, 1} \, \equiv \, (z \, - \, e^{2 \pi i/n})(z \, - \, e^{4 \pi i/n})\ldots(z \, - \, e^{2 (n-1)\pi i/n})\)

or \(1 \,+ \, z \, + \, z^2 \, + \, \ldots \,+ \, z^{n \, - \, 1} \equiv \, (z \, - \, e^{2 \pi i/n})\ldots(z \, - \, e^{2 (n-1)\pi i/n})\)

Putting \(z =1\) in the above identity, we get

\(n \, = \, (1 \, - \, e^{2 \pi i/n})(1 \, - \, e^{4 \pi i/n})\ldots(1 \, - \, e^{2 (n-1)\pi i/n})\)

Hence \(n \, = \, |n| \, = \, |1 \, - \, e^{2 \pi i/n}| \, |1 \, - \, e^{4 \pi i/n}|\ldots|1 \, - \, e^{2 (n-1)\pi i/n}|....(2)\)

From (1) and (2), we get

\(\therefore |A_1A_2| \cdot |A_1A_3| \ldots |A_1A_n| \, = \, n\)

De Moivre's Theorem Question 2:

If \(m, n\) are respectively the least positive and greatest negative integer values of \(k\) such that \(\left(\frac{1 - i}{1 + i}\right)^k = -i, \) then \(m - n =\)

  1. 4
  2. 0
  3. 6
  4. 2

Answer (Detailed Solution Below)

Option 1 : 4

De Moivre's Theorem Question 2 Detailed Solution

Calculation

\(\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} = \frac{1 - 2i + i^2}{1 - i^2} = \frac{1 - 2i - 1}{1 - (-1)} = \frac{-2i}{2} = -i\)

\((-i)^k = -i\)

\(-i = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\)

Using De Moivre's Theorem:

\((-i)^k = \cos\left(\frac{3k\pi}{2}\right) + i\sin\left(\frac{3k\pi}{2}\right)\)

Comparing with -i, we have:

\(\cos\left(\frac{3k\pi}{2}\right) = 0\) and \(\sin\left(\frac{3k\pi}{2}\right) = -1\)

This implies:

\(\frac{3k\pi}{2} = (2n+1)\pi - \frac{\pi}{2}\)

⇒ \(\frac{3k}{2} = 2n + 1 - \frac{1}{2}\)

⇒ \(\frac{3k}{2} = \frac{4n+1}{2}\)

⇒ \(3k = 4n + 1\)

⇒ \(k = \frac{4n+1}{3}\)

For the least positive integer value of k, let n = 0:

\(k = \frac{1}{3}\)

Let n = 1:

\(k = \frac{5}{3}\)

Let n = 2:

\(k = \frac{9}{3} = 3\)

So, m = 3.

For the greatest negative integer value of k, we can analyze the values of k for negative n.

For n = -1:

\(k = \frac{-3}{3} = -1\)

So, n = -1.

\(m - n = 3 - (-1) = 3 + 1 = 4\)

Hence option 1 is correct

De Moivre's Theorem Question 3:

For z ∈ \(\mathbb{C}\), if (1 + z)n = 1 + nc1z + nc2z2 + .... ncnzn and \(\sum_{r=0}^{100} 100 \mathrm{c}_r(\sin \mathrm{r} x)=\left(2 \cos \frac{x}{2}\right)^{100} \sin k x\), then k =

  1. 25
  2. 100
  3. 50
  4. 75

Answer (Detailed Solution Below)

Option 3 : 50

De Moivre's Theorem Question 3 Detailed Solution

Concept:

Euler's theorem:

e = cosθ + isinθ 

De Moivre's Theorem:

(cosθ + isinθ)ncos(nθ) + isin(nθ) 

Calculation:

Given, \((1+z)^n=1+{}^nC_1z+{}^nC_2z^2+\cdots+{}^nC_nz^n=\sum_{r=0}^{n}{}^{n}C_rz^r\)

Putting z = eir, we get:

\((1+e^{ir})^n=1+{}^nC_1e^{ir}+{}^nC_2e^{2ir}+\cdots+{}^nC_ne^{nir}=\sum_{r=0}^{n}{}^{n}C_r(e^{ix})^r\)...(i)

Now \(\sum_{r=0}^{100}{}^{100}C_rz^r(\sin rx)\)

\(\rm Img[\sum_{r=0}^{100}{}^{100}C_rz^r(e^{ix})^r]\), where Img(z) represents the imaginary part of z

\(\rm Img[(1+e^{ix})^{100}]\)

\(\rm Img[(1+\cos x +i\sin x)^{100}]\)

\(\rm Img\left[\left(2\cos^2\left(\frac{x}{2} \right )+2i\sin\left(\frac{x}{2} \right )\cos\left(\frac{x}{2} \right )\right)^{100}\right]\)

\(\rm Img\left[\left(2cos\left(\frac{x}{2} \right )\right)^{100}\left(\cos\left(\frac{x}{2} \right )+i\sin\left(\frac{x}{2} \right)\right)^{100}\right]\)

\(\rm \left(2\cos\left(\frac{x}{2} \right )\right)^{100}Img\left[\cos\left(\frac{100x}{2} \right )+i\sin\left(\frac{100x}{2} \right)\right]\)

\(\rm \left(2\cos\left(\frac{x}{2} \right )\right)^{100}Img\left[\cos50x+i\sin50x\right]\)

\(\rm \left(2\cos\left(\frac{x}{2} \right )\right)^{100}\sin50x\) = \(\left(2 \cos \left(\frac{x}{2}\right)\right)^{100} \sin k x\) (given)

Comparing both sides we get, k = 50

∴ The value of k is 50.

De Moivre's Theorem Question 4:

If z = e and \(\dfrac{3 \cos 3 \theta + 2\cos2\theta + 5\cos5\theta}{3 \sin3\theta +2\sin2\theta + 5\sin5\theta}\) = \(\dfrac{{i\sum\limits_{r = 0}^{10} {a_rz^r} }}{{\sum\limits_{r = 0}^{10} {b_rz^r} }}\) 

then  \(\dfrac{\Bigg({\sum\limits_{r = 0}^{10} {a_r + } \sum\limits_{r = 0}^{10} {b_r} }\Bigg)}{{10}}\)=

  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 2 : 1

De Moivre's Theorem Question 4 Detailed Solution

Concept:

  • If \(\rm \frac{a}{b}=\frac{c}{d}\) then by componendo and dividendo rule  \(\rm \frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Calculation:

Given z = e and  \(\dfrac{3 \cos 3 θ + 2\cos2θ + 5\cos5θ}{3 \sin3θ +2\sin2θ + 5\sin5θ}\) = \(\dfrac{{i\sum\limits_{r = 0}^{10} {a_rz^r} }}{{\sum\limits_{r = 0}^{10} {b_rz^r} }}\)

⇒   \(\dfrac{{\sum\limits_{r = 0}^{10} {a_rz^r} }}{{\sum\limits_{r = 0}^{10} {b_rz^r} }}\) = \(\dfrac{3 \cos 3 θ + 2\cos2θ + 5\cos5θ}{i(3 \sin3θ +2\sin2θ + 5\sin5θ)}\)

We know that if \(\rm \frac{a}{b}=\frac{c}{d}\) then \(\rm \frac{a+b}{a-b}=\frac{c+d}{c-d}\)

⇒ \(\rm\frac{{\sum\limits_{r = 0}^{10} {a_rz^r} }+{\sum\limits_{r = 0}^{10} {b_rz^r} }}{{\sum\limits_{r = 0}^{10} {a_rz^r} }-{\sum\limits_{r = 0}^{10} {b_rz^r} }}\) = \(\rm\frac{(3 \cos 3 θ + 2\cos2θ + 5\cos5θ)+i(3 \sin3θ +2\sin2θ + 5\sin5θ)}{(3 \cos 3 θ + 2\cos2θ + 5\cos5θ)-i(3 \sin3θ +2\sin2θ + 5\sin5θ)}\)

⇒ \(\rm\frac{{\sum\limits_{r = 0}^{10} {a_rz^r} }+{\sum\limits_{r = 0}^{10} {b_rz^r} }}{{\sum\limits_{r = 0}^{10} {a_rz^r} }-{\sum\limits_{r = 0}^{10} {b_rz^r} }}\) = \(\rm\frac{3e^{iθ}+2e^{iθ}+5e^{iθ}}{3e^{-iθ}+2e^{-iθ}+5e^{-iθ}}\)  [e = cos θ + i sin θ ]

⇒ \(\rm\frac{{\sum\limits_{r = 0}^{10} {z^r(a_r + b_r)} }}{{\sum\limits_{r = 0}^{10} {z^r(a_r -b_r)} }}\) = \(\rm\frac{3e^{iθ}+2e^{iθ}+5e^{iθ}}{3e^{-iθ}+2e^{-iθ}+5e^{-iθ}}\) 

We know zr = eirθ and in the R.H.S the value of r are 2, 3 and 5

∴ a0 + b0 = a1 + b1 = a4 + b4 = a6 + b6 = a7 + b7 = a8 + b8 = a9 + b9 = a10 + b10 = 0

∴ a2 + b2 = 2 and a3 + b3 = 3 and a5 + b5 = 5 .

⇒ \(\frac{\Bigg({\sum\limits_{r = 0}^{10} {a_r + } \sum\limits_{r = 0}^{10} {b_r} }\Bigg)}{{10}}\)\(\frac{2+3+5}{10}\) = 1

Required value of the expression is 1

De Moivre's Theorem Question 5:

Comprehension:

Direction: If n ϵ Z (the set of integers), then

(cosθ + i sinθ)n = cos nθ + i sin nθ and

(cosθ - i sinθ)n = cos nθ - i sin nθ

If n is a positive integer, then (1 + i)n + (1 - i)n is equal to

  1. (√2)n - 2 cos \(\left(\frac{n\pi}{4}\right)\)
  2. (√2)n - 2 sin \(\left(\frac{n\pi}{4}\right)\)
  3. (√2)n + 2 cos \(\left(\frac{n\pi}{4}\right)\)
  4. (√2)n + 2 sin \(\left(\frac{n\pi}{4}\right)\)

Answer (Detailed Solution Below)

Option 3 : (√2)n + 2 cos \(\left(\frac{n\pi}{4}\right)\)

De Moivre's Theorem Question 5 Detailed Solution

- www.domiterapia.com

Calculation:

Given,

\( (1 + i)^n + (1 - i)^n \)

We know from De Moivre's theorem that:

\( (1 + i)^n = (\sqrt{2})^n \left( \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right) \)

\( (1 - i)^n = (\sqrt{2})^n \left( \cos \frac{-n\pi}{4} + i \sin \frac{-n\pi}{4} \right) \)

Now, adding both the equations:

\( (1 + i)^n + (1 - i)^n = (\sqrt{2})^n \left( \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right) + (\sqrt{2})^n \left( \cos \frac{-n\pi}{4} + i \sin \frac{-n\pi}{4} \right) \)

Simplifying, the imaginary parts cancel each other, and we are left with:

\( (1 + i)^n + (1 - i)^n = (\sqrt{2})^{n+2} \cos \frac{n\pi}{4} \)

Hence, the correct answer is Option 3.

De Moivre's Theorem Question 6:

Comprehension:

Direction: If n ϵ Z (the set of integers), then

(cosθ + i sinθ)n = cos nθ + i sin nθ and

(cosθ - i sinθ)n = cos nθ - i sin nθ

If x + \(\frac{1}{x}\) = 2 cos θ, then xn\(\frac{1}{x^n}\) is equal to

  1. 2 cos nθ 
  2. 2 sinnθ 
  3. cos 
  4. sin 

Answer (Detailed Solution Below)

Option 1 : 2 cos nθ 

De Moivre's Theorem Question 6 Detailed Solution

- www.domiterapia.com

Calculation:

Given,

\( x + \frac{1}{x} = 2 \cos \theta \)

We know that:

\( x^2 + 2x \cos \theta + 1 = 0 \)

Rearranging the terms, we get:

\( x = \cos \theta + i \sin \theta \)

Then, the value of \(x^n + \frac{1}{x^n} \) is:

\( x^n = (\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \)

\( \frac{1}{x^n} = \cos n\theta - i \sin n\theta \)

Thus,

\( x^n + \frac{1}{x^n} = 2 \cos n \theta \)

Hence, the correct answer is Option 1

De Moivre's Theorem Question 7:

Comprehension:

Direction: If n ϵ Z (the set of integers), then

(cosθ + i sinθ)n = cos nθ + i sin nθ and

(cosθ - i sinθ)n = cos nθ - i sin nθ

If \(\left(\frac{1 \ + \ cos \phi \ + \ i \ sin \phi}{1 \ + \ cos \phi \ - \ i \ sin \phi}\right)^n\) = u + iv, where u and v all real numbers, then u is

  1. n cos ϕ 
  2. cos nϕ
  3. \(cos \left(\frac{n \phi}{2}\right)\)
  4. \(sin \left(\frac{n \phi}{2}\right)\)

Answer (Detailed Solution Below)

Option 2 : cos nϕ

De Moivre's Theorem Question 7 Detailed Solution

- www.domiterapia.com

Calculation:

Given,

\( \frac{1 + \cos \phi + i \sin \phi}{1 + \cos \phi - i \sin \phi} \)

We need to simplify this expression:

\( \frac{1 + \cos \phi + i \sin \phi}{1 + \cos \phi - i \sin \phi} \times \frac{1 + \cos \phi + i \sin \phi}{1 + \cos \phi + i \sin \phi} = \frac{(1 + \cos \phi)^2 + \sin^2 \phi + 2i(1 + \cos \phi) \sin \phi}{(1 + \cos \phi)^2 + \sin^2 \phi} \)

By simplifying the denominator:

\( (1 + \cos \phi)^2 + \sin^2 \phi = 2(1 + \cos \phi) = 2A \)

Now, the numerator becomes:

\( 2A \cos \phi + 2i A \sin \phi \)

Thus the expression simplifies to:

\( \frac{A \cos \phi + i A \sin \phi}{A} = e^{i \phi} \)

Now, we raise this expression to the power \(n\):

\( e^{i \phi} \)

By using De Moivre's Theorem:

\( (e^{i \phi})^n = e^{in \phi} = \cos(n \phi) + i \sin(n \phi) \)

Thus, the real part\(u = \cos(n \phi) \)

Hence, the correct answer is Option (b).

Get Free Access Now
Hot Links: teen patti gold new version 2024 teen patti go online teen patti real money teen patti online teen patti jodi