Term independent of x MCQ Quiz in मराठी - Objective Question with Answer for Term independent of x - मोफत PDF डाउनलोड करा

Last updated on Mar 22, 2025

पाईये Term independent of x उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Term independent of x एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Term independent of x MCQ Objective Questions

Top Term independent of x MCQ Objective Questions

Term independent of x Question 1:

What is the product of the coefficients of x2 and x in the following ?

\(\rm \left(2x^2-3x-\frac{9}{x}\right)\left(-x+\frac{7}{x}\right) \)

  1. 24
  2. 28
  3. 36
  4. 42

Answer (Detailed Solution Below)

Option 4 : 42

Term independent of x Question 1 Detailed Solution

Calculation:

\(\rm \left(2x^2-3x-\frac{9}{x}\right)\left(-x+\frac{7}{x}\right) \)

⇒ - 2x3 + 3x2 + 9 + 14x - 21 - 63/x2

⇒ - 2x3 +  3x2 + 9 + 14x - 21 - 63x-2

Here, coefficients of x2 and x  are 3 and 14 respectively,

Their product = 3 × 14 = 42

∴ The correct answer is 42

Term independent of x Question 2:

If the term is free from x in the expansion of \(\rm ( x -\frac{k}{x^2})^9\) is -84 , find the value of k. 

  1. 3
  2. 2
  3. 1
  4. 8

Answer (Detailed Solution Below)

Option 3 : 1

Term independent of x Question 2 Detailed Solution

Concept:

General Term in the expansion (x + y)n = Tr+1 = nCr . xn-r . yr

 

Calculation:

The general term of \(\rm ( x -\frac{k}{x^2})^9\) is given by, 

\(\rm T_{r+1}=(-1)^r\times^9C_r\times(x)^{9-r}\times(\frac{k}{x^2})^r\)

\(\rm =(-1)^r\times ^9C_r\times(x)^{9-r}\times x^{-2r}\times k^r\)

\(\rm =(-1)^r\times ^9C_r\times(x)^{9-r}\times x^{-2r}\times k^r\)

\(\rm =(-1)^r\times ^9C_r\times(x)^{9-3r}\times k^r\)

Now, the term is free from x (independent term), then power of x is zero

On equating power of x from (1) with zero, we get

9 - 3r = 0 

⇒r = 3

⇒r + 1 = 4

∴ \(\rm T_{3+1}=(-1)^3\times 9C_3\times(x)^{9-9}\times k^3\)

\(\rm =-\frac{9\times8\times7}{3\times2\times1}\times k^3\)

=  -84k3

∴ -84 = -84k3 

⇒ k = 1

Hence, option (3) is correct. 

Term independent of x Question 3:

The ratio of the coefficient of x15 to the term independent of x in \(\rm\Big( x^2+\frac{2}{x}\Big)^{15}\) is

  1. 12:32
  2. 1:32
  3. 32:12
  4. 32:1

Answer (Detailed Solution Below)

Option 2 : 1:32

Term independent of x Question 3 Detailed Solution

Concept:

The general term in a binomial expansion of (a + b)n is given by:

\(T_{r+1}={}^nC_ra^{n-r}b^r\)

Calculation:

Given binomial is \(\rm\Big( x^2+\frac{2}{x}\Big)^{15}\)

∴ General term = Tr+1 = \({}^{15}C_r(x^2)^{15-r}\left(\frac{2}{x}\right)^r\) = \({}^{15}C_r2^rx^{30-3r}\)...(i)

Now, for the coefficient of term containing x15, 30 – 3r = 15 ⇒ r = 5

coefficient of x15  = 15C5 25  [ using (i) ] 

For the term independent of x, put 30 – 3r = 0 ⇒ r = 10

∴ Constant term = 15C10 210 [ using (i) ] 

∴ ratio of the coefficient of x15 to the term independent of x

\(\frac{{}^{15}C_52^{5}}{{}^{15}C_{10}2^{10}}\)

\(\frac{{}^{15}C_52^{5}}{{}^{15}C_{5}2^{10}}\) [∵ \({}^nC_r={}^nC_{n-r}\)]

\(\frac{1}{2^5}\)

∴ Required ratio is 1 : 32.

Term independent of x Question 4:

The term independent of x in the expansion of \(\rm (1+x)^n\left[1+\left(\frac{1}{x}\right)\right]^n\) is

  1. \(\rm C_0^2+2C_1^3+3C_2^2+...+(n+1)C_n^2\)
  2. \(\rm C_1+C_2+C_3+...+C_n\)
  3. \(\rm C_0^2+C_1^2+C_2^2+...+C_n^2\)
  4. \(\rm C_1+2C_2+3C_3+...+nC_n\)
  5. Not Attempted

Answer (Detailed Solution Below)

Option 3 : \(\rm C_0^2+C_1^2+C_2^2+...+C_n^2\)

Term independent of x Question 4 Detailed Solution

Concept:

(1 + x)n = \(\rm C_0 + C_1x+C_2x^2+C_3x^3+...+C_nx^n\)

Calculation:

Given, 

\(\rm (1+x)^n\left[1+\left(\frac{1}{x}\right)\right]^n\)

⇒ \(\rm (C_0 + C_1x+C_2x^2+C_3x^3+...+C_nx^n)(C_0 + C_1{1 \over x}+C_2 {1 \over x^2}+C_3{1 \over x^3}+...+C_n{1 \over x^n})\)

The term independent of x in this expression is obtained when

xk is multiplied by 1/xk .

⇒ The term independent of x = \(\rm C_0^2+C_1^2+C_2^2+...+C_n^2\)

∴ The correct answer is option (3).

Term independent of x Question 5:

If the second, third and fourth terms in the expansion of (a + b)n are 135, 30 and 10/3 respectively, then the value of n.

Answer (Detailed Solution Below) 5

Term independent of x Question 5 Detailed Solution

Concept:

The (r + 1)th term of (a + b)n is given by Tr+1 = nCran-rbr 

Calculation:

Given, second, third and fourth terms in the expansion of (a + b)n are 135, 30 and \(\frac{10}{3}\) 

∴ \({ }^n C_1 a^{n-1} b=135 \quad ...(i)\)

and, \({ }^{\mathrm{n}} \mathrm{C}_2 a^{\mathrm{n}-2} \mathrm{b}^2=30\quad ...(ii)\)

and, \({ }^n C_3 a^{n-3} b^3=\frac{10}{3} \quad ...(iii)\)

By \(\frac{(i)}{(\text { ii) }}\)

\(\frac{{ }^n C_1}{{ }^n C_2} \frac{a}{b}=\frac{9}{2} \quad ...(iv)\)

By \(\frac{(ii)}{(\text { iii) }}\) 

\(\frac{{ }^n C_2}{{ }^n C_3} \frac{a}{b}=9\quad ...(v)\)

By \(\frac{(iv)}{(\text {v) }}\) 

\(\frac{{ }^{\mathrm{n}} C_1{ }^n C_3}{{ }^n C_2{ }^n C_2}=\frac{1}{2}\)

⇒ \(\frac{2 n^2(n-1)(n-2)}{6}=\frac{n(n-1)}{2} \frac{n(n-1)}{2}\)

⇒ 4n – 8 = 3n – 3 

⇒ n = 5

 The value of n is 5.

Term independent of x Question 6:

If the constant term in the expansion of \(\rm (1+2x-3x^3)\left(\frac{3}{2}x^2-\frac{1}{3x}\right)^9\)  is p, then 108p is equal to

Answer (Detailed Solution Below) 54

Term independent of x Question 6 Detailed Solution

Concept:

The (r + 1)th term of (a + b)n is given Tr+1 = nCran-rbr 

Calculation:

Given, \(\left(1+2 x-3 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9\)

The general term of \(\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9\)

\({ }^9 C_r \cdot \frac{3^{9-2 r}}{2^{9-r}}(-1)^r \cdot x^{18-3 r}\)

Put r = 6 to get coeff. of \(x^0={ }^9 C_6 \cdot \frac{1}{6^3} \cdot x^0=\frac{7}{18} x^0\)

Put r = 7 to get coeff. of \(x^{-3}={ }^9 C_r \cdot \frac{3^{-5}}{2^2}(-1)^7 \cdot x^{-3}\)

\(-{ }^9 C_7 \cdot \frac{1}{3^5 \cdot 2^2} \cdot x^{-3}=\frac{-1}{27} x^{-3}\)

∴ \(\left(1+2 x-3 x^3\right)\left(\frac{7}{18} x^0-\frac{1}{27} x^{-3}\right)\)

\(\frac{7}{18}+\frac{3}{27}=\frac{7}{18}+\frac{1}{9}\)

\(\frac{7+2}{18}=\frac{9}{18}=\frac{1}{2}\)

⇒ p = \(\frac{1}{2}\)

∴ 108p = 180 × \(\frac{1}{2}\)

= 54

∴ The value of 108p is 54.

Term independent of x Question 7:

In the expansion of \( \left(\frac{2 x^{3}−1}{x}\right)^{12}\), which term is independent of x ?

  1. 10
  2. 8
  3. 9
  4. 11
  5. None of the above/More than one of the above.

Answer (Detailed Solution Below)

Option 3 : 9

Term independent of x Question 7 Detailed Solution

Concept: Binomial expansion.

The binomial (a + b) can be expanded to the power n (n is non-negative) in the following form:

(a + b)n = \( \sum_{r=0}^{n}\binom{n}{r}a^{n-r}b^r\)

where \( T_{r+1}=\binom{n}{r}a^{n-r}b^r\), denotes the (r + 1)th term.

Solution:

We have \( \Big(\frac{2x^3-1}{x}\Big)^{12}\)\( \Big(2x^2 -\frac{1}{x}\Big)^{12}\)

⇒ a = 2x2, b = \(\frac{-1}{x}\), n = 12

∴ \( T_{r+1}=\binom{12}{r}(2x^2)^{12-r}(\frac{-1}{x})^r\)

⇒ \( T_{r+1}=\binom{12}{r}2^{12-r}x^{(24-2r)}x^{-r}(-1)^{r}\)

⇒ \( T_{r+1}=(-1)^{r}\binom{12}{r}2^{12-r}x^{24-3r}\)

Now, for the term to be independent of x, the power of x should be zero

⇒ 24 - 3r = 0

⇒ 3r = 24

⇒ r = 8

∴ \(T_{9}\) is independent of x.

∴ The term independent of x is the 9th term.

Term independent of x Question 8:

The term independent of x in \(\rm (1+x)^3(1+\frac{1}{x})^4\) is

  1. 4C2
  2. 4C3
  3. 7C2
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above

Term independent of x Question 8 Detailed Solution

Concept:

General term: General term in the expansion of (x + y) n is given by \({{\rm{T}}_{\left( {{\rm{r\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{\rm{n}}}{{\rm{C}}_{\rm{r}}} \times {{\rm{x}}^{{\rm{n}} - {\rm{r}}}} \times {{\rm{y}}^{\rm{r}}}\)

Calculation:

We have to find term independent of x in \(\rm (1+x)^3(1+\frac{1}{x})^4\)

⇒ \(\rm (1+x)^3(1+\frac{1}{x})^4 = \frac{(x+1)^3(x+1)^4}{x^4} = (x+1)^7x^{-4}\)

As we know, \({{\rm{T}}_{\left( {{\rm{r\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{\rm{n}}}{{\rm{C}}_{\rm{r}}} \times {{\rm{x}}^{{\rm{n}} - {\rm{r}}}} \times {{\rm{y}}^{\rm{r}}}\)

⇒  \({{\rm{T}}_{\left( {{\rm{r\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{\rm{7}}}{{\rm{C}}_{\rm{r}}} \times {{\rm{x}}^{{\rm{7}} - {\rm{r}}}} \rm \times 1^r \times {{\rm{x}}^{\rm{-4}}}\)

7Cr x3-r

For the term independent of x, power of x should be zero

Therefore, 3 - r = 0

⇒ r = 3

Hence the term is T3+1 and the coefficient is 7C3

Term independent of x Question 9:

The term independent of x in the expansion of 
\(\left( \frac{(x+1)}{(x^{2/3} + 1 - x^{1/3})} - \frac{(x+1)}{(x - x^{1/2})} \right)^{10}, x > 1 \text{ is:}\)

  1. 210
  2. 150 
  3. 240 
  4. 120

Answer (Detailed Solution Below)

Option 1 : 210

Term independent of x Question 9 Detailed Solution

Calculation:

Given,

We are given the equation:

\( \left( \frac{x+1}{x^{2/3} + 1 - x^{1/3}} - \frac{x+1}{x - x^{1/2}} \right)^{10}, x > 1 \)

Simplify the terms inside the bracket:

\( = \left( \frac{x+1}{(x^{1/3})^2 - x^{1/3} + 1} - \frac{x+1}{\sqrt{x}(\sqrt{x} - 1)} \right)^{10} \)

\( = \left( (x^{1/3} + 1) - \frac{\sqrt{x} + 1}{\sqrt{x}} \right)^{10} \)

\( = \left( x^{1/3} + 1 - 1 - x^{-1/2} \right)^{10} = \left( x^{1/3} - x^{-1/2} \right)^{10} \)

The general term T{r+1}\) is given by:

\( T_{r+1} = {}^{10}C_r (x^{1/3})^{10-r} (-x^{-1/2})^r = {}^{10}C_r (-1)^r x^{\frac{10-r}{3} - \frac{r}{2}} \)

For the term independent of x, the exponent of x must be zero:

\( \frac{10-r}{3} - \frac{r}{2} = 0 \Rightarrow 2(10-r) - 3r = 0 \Rightarrow 20 - 5r = 0 \Rightarrow r = 4 \)

The required term is T5:

\( T_5 = {}^{10}C_4 (-1)^4 x^0 = {}^{10}C_4 = \frac{10!}{4!6!} = 210 \)

∴ The term independent of x is 210.

Term independent of x Question 10:

Find the term independent of x in the expansion of \( \left[ \frac{x + 1}{x^{2/3} + 1 - x^{1/3}} - \frac{x - 1}{x - x^{1/2}} \right]^{10} \) , given that  x > 1.

Answer (Detailed Solution Below) 210

Term independent of x Question 10 Detailed Solution

Concept:

  • Binomial Theorem: Used to expand expressions of the form (a + b)n into a sum involving binomial coefficients.
  • Term Independent of x: A term in an expansion where the power of x is 0. For any expression raised to a power, to find the constant term, we solve for the power of x becoming 0 in the general term.
  • Given expression is of the form (x1/3 − x−1/2)10.
  • Let the general term be: Tr+1 = C(10, r) × (x1/3)10−r × (−x−1/2)r
  • Total power of x in the term = (10 − r)/3 − r/2
  • Set this power equal to 0 to find the constant term.

 

Calculation:

Given expression: [(x + 1)/(x2/3 − x1/3 + 1) − (x − 1)/(x − x1/2)]10

Simplifying and rewriting: = [(x1/3 + 1)/(x2/3 − x1/3 + 1)] − [(√x − 1)/(√x − 1)] = (x1/3 − x−1/2)10

Let Tr+1 be the general term:

Tr+1 = C(10, r) × (x1/3)10−r × (−x−1/2)r

⇒ Tr+1 = C(10, r) × (−1)r × x(10−r)/3 − r/2

For term independent of x:

⇒ (10 − r)/3 − r/2 = 0

⇒ Multiply entire equation by 6:

⇒ 2(10 − r) − 3r = 0

⇒ 20 − 2r − 3r = 0

⇒ 20 − 5r = 0

⇒ r = 4

Now compute the coefficient:

T5 = C(10, 4) × (−1)4 = C(10, 4) = 210

∴ The term independent of x is 210.

Get Free Access Now
Hot Links: teen patti gold real cash teen patti customer care number teen patti comfun card online teen patti gold download teen patti club