Shortest Distance MCQ Quiz in मराठी - Objective Question with Answer for Shortest Distance - मोफत PDF डाउनलोड करा

Last updated on Apr 7, 2025

पाईये Shortest Distance उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Shortest Distance एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Shortest Distance MCQ Objective Questions

Top Shortest Distance MCQ Objective Questions

Shortest Distance Question 1:

Find the shortest distance between the lines \(\frac{{x - 3}}{{ - 1}} = \frac{{y - 4}}{2} = \frac{{z + 2}}{1}\;\;and\;\frac{{x - 1}}{1} = \frac{{y + 7}}{3} = \frac{{z + 2}}{2}\) ?

  1. \(\sqrt{33}\)
  2. \(\sqrt {31}\)
  3. \(\sqrt{35}\)
  4. None of these

Answer (Detailed Solution Below)

Option 3 : \(\sqrt{35}\)

Shortest Distance Question 1 Detailed Solution

Concept:

The shortest distance between the skew line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\) is given by:

\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

Calculation:

Given: Equation of lines is \(\frac{{x - 3}}{{ - 1}} = \frac{{y - 4}}{2} = \frac{{z + 2}}{1}\;\;and\;\frac{{x - 1}}{1} = \frac{{y + 7}}{3} = \frac{{z + 2}}{2}\)

By comparing the given equations with \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\), we get

⇒ x1 = 3, y1 = 4, z1 = - 2, a1 = -1, b1 = 2 and c1 = 1

Similarly, x2 = 1, y2 = - 7, z2 = -2, a2 = 1, b2 = 3 and c2 = 2

So, \(\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} { - 2}&{ - 11}&0\\ { - 1}&2&1\\ 1&3&2 \end{array}} \right|\)

As we know that shortest distance between two skew lines is given by:\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

⇒ \(SD = \sqrt{35} \ units\)

Hence, option C is the correct answer.

Shortest Distance Question 2:

Let λ be an integer. If the shortest distance between the lines x – λ = 2y – 1 = -2z and x = y + 2λ = z – λ is √7/2√2, then the value of |λ| is _________

Answer (Detailed Solution Below) 1

Shortest Distance Question 2 Detailed Solution

Calculation:

Distance between skew lines \(\vec{r}=\vec{a_1}+\lambda\vec{b_1}\) and \(\vec{r}=\vec{a_2}+\mu\vec{b_2}\) is given by:

d = \(\rm \frac{[(\vec{a}_2-\vec{a}_1)\cdot(\vec{b}_1 \times\vec{b}_2)]}{|\vec{b}_1 \times \vec{b}_2|}\)

Calculation:

Given, (x – λ)/1 = (y – 1/2)/(1/2) = z/(-1/2)

(x – λ)/2 = (y-1/2)/1 = z/(-1) …(1) Point on line = (λ, 1/2, 0)

x/1 = (y + 2λ)/1 = (z – λ)/1 …(2) Point on line = (0, -2λ, λ)

∴ Distance between skew lines = \(\rm \frac{[(\vec{a}_2-\vec{a}_1)\cdot(\vec{b}_1 \times\vec{b}_2)]}{|\vec{b}_1 \times \vec{b}_2|}\)

\(\frac{\left|\begin{array}{ccc} \lambda & \frac{1}{2}+2 \lambda & -\lambda \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{array}\right|}{\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{array}\right|}\)

= |-5λ – 3/2|/\(\sqrt{14}\)

= √7/(2√2) (Given)

⇒ |10λ + 3| = 7

⇒ 10λ + 3 = ± 7

⇒ λ = - 1 [∵ λ is an integer]

⇒ |λ| = 1

∴ The value of |λ| is 1. 

Shortest Distance Question 3:

The shortest distance between the lines \(\rm \frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}\ and\ \frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}\) is

  1. 6√3
  2. 4√3
  3. 5√3
  4. 8√3

Answer (Detailed Solution Below)

Option 2 : 4√3

Shortest Distance Question 3 Detailed Solution

Concept:

The shortest distance between the lines \(\frac{x-x_0}{a_0}=\frac{y-y_0}{b_0}=\frac{z-z_0}{c_0} \) and \(\frac{x-x_1}{a_1}=\frac{y-y_1}{b_1}=\frac{z-z_1}{c_1} \) is given by d = \(\left|\frac{\left(\vec{a}_2-\vec{a}_1\right) \cdot\left(\vec{b}_1 \times \vec{b}_2\right)}{\left|\vec{b}_1 \times \vec{b}_2\right|}\right|\)

Calculation:

Given, \(\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5} \) and \(\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}\)

∴ a1 \(3\hat{i} -15\hat{j}+ 9\hat{k}\) and b1\(2\hat{i} -7\hat{j}+5\hat{k}\)

a2 = \(-1\hat{i}+\hat{j}+9\hat{k}\) and b2\(2\hat{i}+\hat{j}-3\hat{k}\)

⇒ a2 – a1\(-4\hat{i}+16\hat{j}+0\hat{k}\)

∴ \(\overline{\mathrm{b}}_1 \times \overline{\mathrm{b}}_2=\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{array}\right|=\hat{\mathrm{i}}(16)-\hat{\mathrm{j}}(-16)+\hat{\mathrm{k}}(16)\)

\(16(\hat{i}+\hat{j}+\hat{k})\)

⇒ \(\left|\bar{b}_1 \times \bar{b}_2\right|=16 \sqrt{3}\)

∴ \(\left(\overline{\mathrm{a}}_2-\overline{\mathrm{a}}_1\right) \cdot\left(\overline{\mathrm{b}}_1-\overline{\mathrm{b}}_2\right)\) = 16[-4 + 16] = (16)(12)

⇒ d = \(\frac{(16)(12)}{16 \sqrt{3}}\) = 4√3

∴ The shortest distance is 4√3.

The correct answer is Option 2.

Shortest Distance Question 4:

The shortest distance between lines L1 and L2, where \(\rm L_1:\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+4}{2}\) and L2 is the line passing through the points A(-4, 4, 3). B(-1, 6, 3) and perpendicular to the line \(\rm \frac{x-3}{-2}=\frac{y}{3}=\frac{z-1}{1}\) is

  1. \(\frac{121}{\sqrt{221}}\)
  2. \(\frac{24}{\sqrt{117}}\)
  3. \(\frac{141}{\sqrt{221}}\)
  4. \(\frac{42}{\sqrt{117}}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{141}{\sqrt{221}}\)

Shortest Distance Question 4 Detailed Solution

Calculation

\(L_2=\frac{x+4}{3}=\frac{y-4}{2}=\frac{z-3}{0}\)

\(\therefore \text { S.D }=\frac{\left|\begin{array}{ccc} \mathrm{x}_2-\mathrm{x}_1 & \mathrm{y}_2-\mathrm{y}_1 & \mathrm{z}_2-\mathrm{z}_1 \\ 2 & -3 & 2 \\ 3 & 2 & 0 \end{array}\right|}{\left|\overrightarrow{\mathrm{n}_1} \times \overrightarrow{\mathrm{n}_2}\right|}\)

⇒ \(\frac{\left|\begin{array}{ccc} 5 & -5 & -7 \\ 2 & -3 & 2 \\ 3 & 2 & 0 \end{array}\right|}{\left|\overrightarrow{n_1} \times \overrightarrow{n_2}\right|}\)

⇒ \(\frac{141}{|-4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+13 \hat{k}|}\)

⇒ \(\frac{141}{\sqrt{16+36+169}}\)

⇒ \(\frac{141}{\sqrt{221}}\)

Hence, Option (3) is correct

Shortest Distance Question 5:

If d1 is the shortest distance between the lines  x + 1 = 2y = -12z, x = y + 2 = 6z – 6 and d2 is the shortest distance between the lines \(\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5}, \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}\), then the value of \(\frac{32 \sqrt{3} d_1}{d_2}\) is :

Answer (Detailed Solution Below) 16

Shortest Distance Question 5 Detailed Solution

Calculation

Given

\(\mathrm{L}_1: \frac{\mathrm{x}+1}{1}=\frac{\mathrm{y}}{1 / 2}=\frac{\mathrm{z}}{-1 / 12}, \mathrm{~L}_2: \frac{\mathrm{x}}{1}=\frac{\mathrm{y}+2}{1}=\frac{\mathrm{z}-1}{\frac{1}{6}}\)

d1 = shortest distance between L1 & L2 

⇒ d1\(\left|\frac{\left(\overrightarrow{\mathrm{a}}_2-\overrightarrow{\mathrm{a}}_1\right) \cdot\left(\overrightarrow{\mathrm{b}}_1 \times \overrightarrow{\mathrm{b}}_2\right)}{\left|\left(\overrightarrow{\mathrm{b}}_1 \times \overrightarrow{\mathrm{b}}_2\right)\right|}\right|\)

⇒ d1 = 2

\(\mathrm{L}_3: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+8}{-7}=\frac{\mathrm{z}-4}{5}, \mathrm{~L}_4: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-2}{1}=\frac{\mathrm{z}-6}{-3}\)

d2 = shortest distance between L3 & L4

⇒ \(\mathrm{d}_2=\frac{12}{\sqrt{3}}\) 

Hence

\(\frac{32 \sqrt{3} \mathrm{~d}_1}{\mathrm{~d}_2}=\frac{32 \sqrt{3} \times 2}{\frac{12}{\sqrt{3}}}\) = 16

Shortest Distance Question 6:

Find the shortest distance between the lines \(\frac{{x - 12}}{{ - 9}} = \frac{{y - 1}}{4} = \frac{{z - 5}}{2}\;and\frac{{x - 23}}{{ - 6}} = \frac{{y - 19}}{{ - 4}} = \frac{{z - 25}}{3}\)

  1. 26
  2. 23
  3. 25
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 26

Shortest Distance Question 6 Detailed Solution

Concept:

The shortest distance between the skew line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;\)and \(\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\) is given by:

\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

Calculation:

Given: Equation of lines is \(\frac{{x - 12}}{{ - 9}} = \frac{{y - 1}}{4} = \frac{{z - 5}}{2}\) and \(\frac{{x - 23}}{{ - 6}} = \frac{{y - 19}}{{ - 4}} = \frac{{z - 25}}{3}\)

By comparing the given equations with \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\) and \(\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\), we get

⇒ x1 = 12, y1 = 1, z1 = 5, a1 = -9, b1 = 4 and c1 = 2

Similarly, x2 = 23, y2 = 19, z2 = 25, a2 = -6, b2 = -4 and c2 = 3

So, \(\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| \)

\(= \left| {\begin{array}{*{20}{c}} {11}&{18}&{20}\\ { - 9}&4&2\\ { - 6}&{ - 4}&3 \end{array}} \right|\)

As we know that shortest distance between two skew lines is given by:\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

⇒ SD = 26 units

Hence, option A is the correct answer.

Shortest Distance Question 7:

Find the shortest distance between the lines \(\frac{{x - 3}}{1} = \frac{{y - 5}}{{ - 2}} = \frac{{z - 7}}{1}\;\;and\;\frac{{x + 1}}{7} = \frac{{y + 1}}{{ - 6}} = \frac{{z + 1}}{1}\)

  1. \(2\sqrt{29}\)
  2. \(\sqrt{29}\)
  3. \(3\sqrt{29}\)
  4. None of these

Answer (Detailed Solution Below)

Option 1 : \(2\sqrt{29}\)

Shortest Distance Question 7 Detailed Solution

Concept:

The shortest distance between the skew line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\) is given by:

\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt{\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

Calculation:

Given: The equation of lines is \(\frac{{x - 3}}{1} = \frac{{y - 5}}{{ - 2}} = \frac{{z - 7}}{1}\;\;and\;\frac{{x + 1}}{7} = \frac{{y + 1}}{{ - 6}} = \frac{{z + 1}}{1}\)

By comparing the given equations, we get

⇒ x1 = 3, y1 = 5, z1 = 7, a1 = 1, b1 = - 2 and c1 = 1

Similarly, x2 = - 1, y2 = -1, z2 = -1, a2 = 7, b2 = - 6 and c2 = 1

So, \(\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} { - 4}&{ - 6}&{ - 8}\\ 1&{ - 2}&1\\ 7&{ - 6}&1 \end{array}} \right|\)

Similarly, 

\(\sqrt{(a_1b_2- a_2b_1)^2 +( b_1c_2 - b_2c_1)^2+ (c_1a_2 - c_2a_1)^2}\)

= 2√29

As we know that shortest distance between two skew lines is given by:

\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt{\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

⇒ SD = \(2\sqrt{29}\)

Shortest Distance Question 8:

If the line, \(\dfrac{x-3}{1}=\dfrac{y+2}{-1}=\dfrac{z+\lambda}{-2}\) lies on the plane \(2x-4y+3z=2\), then the shortest distance between this line and the line \(\dfrac{x-1}{12}=\dfrac{y}{9}=\dfrac{z}{4}\) is

  1. \(0\)
  2. \(2\)
  3. \(1\)
  4. \(3\)

Answer (Detailed Solution Below)

Option 1 : \(0\)

Shortest Distance Question 8 Detailed Solution

Calculation

\(\dfrac{x-3}{1}=\dfrac{y+2}{-1}=\dfrac{z+\lambda}{-2}=k\)

Let P be any point on the line,

\(P=(k+3, -k-2, -2k-\lambda)\)

P lies on the plane \(2x-4y+3z=2\)

⇒ \(2(k+3)-4(-k-2)+3(-2k-\lambda)=2\)

⇒ \(2k+6+4k+8-6k-3\lambda =2\)

⇒ \(14-3\lambda =2\)

⇒ \(3\lambda =12\)

⇒ \(\lambda =4\)

\(\therefore\) Line \(1\) is \(\dfrac{x-3}{1}=\dfrac{y+2}{-1}=\dfrac{z+4}{-2}\)

Another line is \(\dfrac{x-1}{12}=\dfrac{y}{9}=\dfrac{z}{4}\)(line \(2\)) Shortest distance be d.

⇒ \(a^2=\begin{vmatrix} x_1-x_2 & y_1-y_2 & z_1-z_2\\\ l_1 & m_1 & n_1\\\ l_2 & m_2 & n_2\end{vmatrix}\) where \(l_1m_1n\) are DRS of lines

\(⇒ \begin{vmatrix} 3-1 & -2-0 & -4-0\ \\1 & -1 & -2 \ \\12 & 9 & 4\end{vmatrix}\)

⇒ \(\begin{vmatrix} 2 & -2 & -4 \\\ 1 & -1 & -2 \ \\12 & 9 & 4\end{vmatrix}=|2(14)+2(28)-4(21)|=|28+56-84|=0\)

\(\therefore d^2=0\)

\(\Rightarrow d=0\)

Hence option 1 is correct

Shortest Distance Question 9:

If the shortest distance between the lines \(\rm \frac{x-λ}{-2}=\rm \frac{y-2}{1}=\rm \frac{z-1}{1}\) and \(\rm \frac{x-\sqrt3}{1}=\rm \frac{y-1}{-2}=\rm \frac{z-2}{1}\) is 1, then the sum of all possible values of λ is :

  1. 0
  2. \(2\sqrt3\)
  3. \(3\sqrt3\)
  4. \(-2\sqrt3\)

Answer (Detailed Solution Below)

Option 2 : \(2\sqrt3\)

Shortest Distance Question 9 Detailed Solution

Calculation

Given: Shortest distance(S.D) = 1

Passing points of lines L1 & L2 are

(λ, 2, 1) & (√3, 1, 2)

\(\text { S.D }=\frac{\left|\begin{array}{ccc} √{3}-\lambda & -1 & 1 \\ -2 & 1 & 1 \\ 1 & -2 & 1 \end{array}\right|}{\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & 1 \\ 1 & -2 & 1 \end{array}\right|}\)

⇒ \(1=\left|\frac{√{3}-\lambda}{√{3}}\right|\)

 λ = 0, λ = 2√3

∴ The sum of all possible values of λ is \(2\sqrt3\)

Shortest Distance Question 10:

If the shortest distance between the lines \(\frac{x-λ}{2}=\frac{y-4}{3}=\frac{z-3}{4}\) and \(\frac{x-2}{4}=\frac{y-4}{6}=\frac{z-7}{8}\) is \(\frac{13}{\sqrt{29}}\), then a value of λ is :

  1. \(-\frac{13}{25}\)
  2. \(\frac{13}{25}\)
  3. 1
  4. -1

Answer (Detailed Solution Below)

Option 3 : 1

Shortest Distance Question 10 Detailed Solution

Explanation -

\(\left.\begin{array}{c} \bar{r}_1=(λ \hat{i}+4 \hat{j}+3 \hat{k})+\alpha(2 \hat{i}+3 \hat{j}+4 \hat{k}) \\ \bar{r}_2=(2 \hat{i}+4 \hat{j}+7 \hat{k})+\beta(2 \hat{i}+3 \hat{j}+4 \hat{k}) \end{array}\right\} \begin{aligned} & \overline{\mathrm{b}}=2 \hat{i}+3 \mathrm{j}+4 \hat{k} \\ & \bar{a}_1+λ \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}} \\ & \mathrm{a}_2=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+7 \hat{k} \end{aligned}\)

Shortest dist. = \(\frac{\left|\overline{\mathrm{b}} \times\left(\overline{\mathrm{a}}_2-\overline{\mathrm{a}}_1\right)\right|}{|\mathrm{b}|}=\frac{13}{\sqrt{29}}\)

\(\frac{|(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}) \times((2-λ) \hat{\mathrm{i}}+4 \hat{\mathrm{k}})|}{\sqrt{29}}=\frac{13}{\sqrt{29}}\)

\(|-8 \hat{\mathrm{j}}-3(2-λ) \hat{\mathrm{k}}+12 \hat{\mathrm{i}}+4(2-λ) \hat{\mathrm{j}}|=13\)

\(|12 \hat{i}-4 λ \hat{j}+(3 λ-6) \hat{k}|=13\)

144 + 16λ2 + (3λ – 6)2 = 169

16λ2 + (3λ – 6)2 = 25  ⇒ λ = 1 

Hence Option (3) is correct.

Get Free Access Now
Hot Links: teen patti master apk download teen patti bindaas teen patti gold old version teen patti bliss