Evaluate using Special Integral Forms MCQ Quiz in मराठी - Objective Question with Answer for Evaluate using Special Integral Forms - मोफत PDF डाउनलोड करा

Last updated on Mar 26, 2025

पाईये Evaluate using Special Integral Forms उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Evaluate using Special Integral Forms एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Evaluate using Special Integral Forms MCQ Objective Questions

Top Evaluate using Special Integral Forms MCQ Objective Questions

Evaluate using Special Integral Forms Question 1:

What is the value of \(\rm \int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)

  1. \(\rm e^x ({1\over x^2})\) + c
  2. \(\rm e^x ({-1\over x^2})\) + c
  3. \(\rm e^x ({1\over x})\) + c
  4. \(\rm e^x ({-1\over x})\) + c
  5. None of these

Answer (Detailed Solution Below)

Option 3 : \(\rm e^x ({1\over x})\) + c

Evaluate using Special Integral Forms Question 1 Detailed Solution

Concept

\(\rm \int e^x \left(f(x)+f'(x)\right)dx \) = ex f(x) + c

Calculation:

Let, \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)

Let f(x) = \(\rm 1\over x\)

⇒ \(\rm f'(x) = - {1\over x^2}\)

∴ \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)\(\rm \int e^x \left(f(x)+f'(x)\right)dx \)

ex f(x) + c

\(\rm e^x ({1\over x})\) ​​+ c

Hence, option (3) is correct.

Get Free Access Now
Hot Links: teen patti tiger teen patti casino teen patti baaz teen patti real cash 2024