Evaluate using Special Integral Forms MCQ Quiz in मराठी - Objective Question with Answer for Evaluate using Special Integral Forms - मोफत PDF डाउनलोड करा
Last updated on Mar 26, 2025
पाईये Evaluate using Special Integral Forms उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Evaluate using Special Integral Forms एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.
Latest Evaluate using Special Integral Forms MCQ Objective Questions
Top Evaluate using Special Integral Forms MCQ Objective Questions
Evaluate using Special Integral Forms Question 1:
What is the value of \(\rm \int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)
Answer (Detailed Solution Below)
Option 3 : \(\rm e^x ({1\over x})\) + c
Evaluate using Special Integral Forms Question 1 Detailed Solution
Concept
\(\rm \int e^x \left(f(x)+f'(x)\right)dx \) = ex f(x) + c
Calculation:
Let, \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)
Let f(x) = \(\rm 1\over x\)
⇒ \(\rm f'(x) = - {1\over x^2}\)
∴ \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)= \(\rm \int e^x \left(f(x)+f'(x)\right)dx \)
= ex f(x) + c
= \(\rm e^x ({1\over x})\) + c
Hence, option (3) is correct.