Differentiation of Implicit Functions MCQ Quiz in मराठी - Objective Question with Answer for Differentiation of Implicit Functions - मोफत PDF डाउनलोड करा
Last updated on Mar 30, 2025
Latest Differentiation of Implicit Functions MCQ Objective Questions
Top Differentiation of Implicit Functions MCQ Objective Questions
Differentiation of Implicit Functions Question 1:
Consider the following for the two (02) items that follow:
Let , where p,q are positive integers.
The derivative of y with respect to x
Answer (Detailed Solution Below)
Differentiation of Implicit Functions Question 1 Detailed Solution
Calculation:
Given,
\((x+y)^{p+q} = x^p\,y^q\)
Differentiate implicitly w.r.t. \(x\):
\((p+q)(x+y)^{p+q-1}\bigl(1+\tfrac{dy}{dx}\bigr) = p\,x^{p-1}y^q \;+\; q\,x^p\,y^{q-1}\tfrac{dy}{dx}\)
Rearrange to collect \(\tfrac{dy}{dx}\):
\(\tfrac{dy}{dx}\bigl[(p+q)(x+y)^{p+q-1} - q\,x^p\,y^{q-1}\bigr] = p\,x^{p-1}y^q - (p+q)(x+y)^{p+q-1}\)
Use \((x+y)^{p+q-1}=\frac{x^p\,y^q}{x+y}\) to simplify:
\(\tfrac{dy}{dx} = \tfrac{y}{x}\)
∴ \(\displaystyle \frac{dy}{dx} = \frac{y}{x}\), independent of \(p\) and \(q\).
Hence, the correct answer is Option 4.
Differentiation of Implicit Functions Question 2:
If 2x + 2y = 2x+y, then \(\frac{d y}{d x}=\)
Answer (Detailed Solution Below)
Differentiation of Implicit Functions Question 2 Detailed Solution
Concept:
- \(\rm \frac{d}{dx}a^x=a^x\log a\)
Calculation:
Given 2x + 2y = 2x+y
We know that 2a+b = 2a⋅ 2b
⇒ 2x + 2y = 2x ⋅ 2y
⇒ \(\rm \frac{2^x+2^y}{2^x\cdot2^y}=1\)
⇒ 2-y + 2-x = 1 ..(1)
Differentiating the above equation with respect to x:
⇒ (-2- y\(\rm\frac{dy}{dx}\) - 2- x) log 2 = 0
⇒ \(\rm \frac{dy}{dx}=-\frac{2^{-x}}{2^{-y}}\)
⇒ \(\rm \frac{dy}{dx}=-\frac{1-2^{-y}}{2^{-y}}\)
⇒ \(\rm \frac{dy}{dx}\) = - 2y + 1
⇒ \(\rm \frac{dy}{dx}\) = 1 - 2y
The required value of \(\rm \frac{dy}{dx}\) is 1 - 2y .
Differentiation of Implicit Functions Question 3:
If \(2x^2 - 3xy + 4y^2 + 2x - 3y + 4 = 0, \) then \(\left( \frac{dy}{dx} \right)_{(3,2)}\) =
Answer (Detailed Solution Below)
Differentiation of Implicit Functions Question 3 Detailed Solution
Calculation:
Given:
\(2x^2 - 3xy + 4y^2 + 2x - 3y + 4 = 0\)
Differentiating the given equation with respect to x, we get:
⇒ \(4x - 3\left(x\frac{dy}{dx} + y\right) + 8y\frac{dy}{dx} + 2 - 3\frac{dy}{dx} = 0\)
⇒ \(4x - 3x\frac{dy}{dx} - 3y + 8y\frac{dy}{dx} + 2 - 3\frac{dy}{dx} = 0\)
⇒ \((8y - 3x - 3)\frac{dy}{dx} = 3y - 4x - 2\)
⇒ \(\frac{dy}{dx} = \frac{3y - 4x - 2}{8y - 3x - 3}\)
⇒ \(\left(\frac{dy}{dx}\right)_{(3,2)} = \frac{3(2) - 4(3) - 2}{8(2) - 3(3) - 3}\)
⇒ \(\left(\frac{dy}{dx}\right)_{(3,2)} = \frac{6 - 12 - 2}{16 - 9 - 3}\)
⇒ \(\left(\frac{dy}{dx}\right)_{(3,2)} = \frac{-8}{4}\)
⇒ \(\left(\frac{dy}{dx}\right)_{(3,2)} = -2\)
∴ \(\left(\frac{dy}{dx}\right)_{(3,2)} = -2\)
Hence option 3 is correct
Differentiation of Implicit Functions Question 4:
For the curve y = αx2 + cos y + β, the value of \(\frac{dy}{dx}\) at (1, 0) is 2. Then the value of αβ is equal to
Answer (Detailed Solution Below)
Differentiation of Implicit Functions Question 4 Detailed Solution
Calculation
\(y = \alpha x^2 + \cos y + \beta\)
Differentiate both sides with respect to x:
⇒ \(\frac{dy}{dx} = 2\alpha x - \sin y \frac{dy}{dx}\)
⇒ \(\frac{dy}{dx} (1 + \sin y) = 2\alpha x\)
⇒ \(\frac{dy}{dx} = \frac{2\alpha x}{1 + \sin y}\)
At (1, 0):
⇒ \(2 = \frac{2\alpha (1)}{1 + \sin 0}\)
⇒ \(2 = \frac{2\alpha}{1 + 0}\)
⇒ \(2 = 2\alpha\)
⇒ \(\alpha = 1\)
Substitute (1, 0) in the given equation:
⇒ \(0 = \alpha (1)^2 + \cos 0 + \beta\)
⇒ \(0 = \alpha + 1 + \beta\)
⇒ \(0 = 1 + 1 + \beta\)
⇒ \(\beta = -2\)
\(\alpha \beta = 1 \times (-2)\)
⇒ \(\alpha \beta = -2\)
\(\therefore \alpha \beta = -2\)
Hence option 4 is correct
Differentiation of Implicit Functions Question 5:
Derivative of \( \log { \left( \sec { \theta } +\tan { \theta } \right) } \) with respect to \( \sec { \theta } \) at \( \theta =\cfrac { \pi }{ 4 } \) is ...........
Answer (Detailed Solution Below)
Differentiation of Implicit Functions Question 5 Detailed Solution
\( \cfrac { d(\log(\sec\theta +\tan\theta )) }{ d(\sec\theta ) } =\cfrac { (\cfrac { \sec\theta \tan\theta +{ \sec }^{ 2 }\theta }{ \sec\theta +\tan\theta } ) }{ \sec\theta \tan\theta } =\cfrac { 1 }{ \tan\theta } =\cot\theta =\cot(\cfrac { \pi }{ 4 })=1 \)
Differentiation of Implicit Functions Question 6:
If y = 3e2x + 2e3x, then \(\frac{{{d^2}y}}{{d{x^2}}}\) - 5 \(\frac{{dy}}{{dx}}\) + 6y equals
Answer (Detailed Solution Below)
Differentiation of Implicit Functions Question 6 Detailed Solution
Given
y= 3e2x + 2e3x
Formula used
d(xn)/dx = nxn-1
Solution
⇒dy/dx = 3e2x(2) + 2e3x(3)
⇒dy/dx = 6(e2x + e3x)
⇒d2y/dx2 = 6(2e2x+3e3x)
As asked in the question,
⇒ \(\frac{{{d^2}y}}{{d{x^2}}}\) - 5 \(\frac{{dy}}{{dx}}\) + 6y =
⇒ 12e2x + 18e3x − 30e2x − 30e3x + 18e2x + 12e3x
⇒ 0.
The correct option is 4.
Differentiation of Implicit Functions Question 7:
What is the value of \(\rm dy\over dx\), if y2 + x2 + 3x + 5 = 0 at (0, -3)?
Answer (Detailed Solution Below)
Differentiation of Implicit Functions Question 7 Detailed Solution
Concept:
Chain Rule (Differentiation by substitution): If y is a function of u and u is a function of x
- \(\rm {dy\over dx} = {dy\over du}× {du\over dx}\)
Calculation:
Given y2 + x2 + 3x + 5 = 0
Differentiating with respect to x, we get
2y \(\rm dy\over dx\) + 2x +3(1) + 0 = 0
2y\(\rm dy\over dx\) + 2x + 3 = 0
2y \(\rm dy\over dx\) = -(2x + 3)
\(\rm {dy\over dx} = -{2x+3\over2y}\)
Now at (0, -3)
\(\rm {dy\over dx} = -{2(0)+3\over2(-3)}\)
\(\rm {dy\over dx} = -{3\over(-6)}\)
\(\rm {dy\over dx} = {1\over2}\) = 0.5