Differentiation of Implicit Functions MCQ Quiz in मराठी - Objective Question with Answer for Differentiation of Implicit Functions - मोफत PDF डाउनलोड करा

Last updated on Mar 30, 2025

पाईये Differentiation of Implicit Functions उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Differentiation of Implicit Functions एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Differentiation of Implicit Functions MCQ Objective Questions

Top Differentiation of Implicit Functions MCQ Objective Questions

Differentiation of Implicit Functions Question 1:

 Consider the following for the two (02) items that follow: 

 Let , where p,q are positive integers.

The derivative of y with respect to x

  1. depends on p only
  2. depends on q only
  3. depends on both p and q
  4. is independent of both p and q

Answer (Detailed Solution Below)

Option 4 : is independent of both p and q

Differentiation of Implicit Functions Question 1 Detailed Solution

Calculation:

Given,

\((x+y)^{p+q} = x^p\,y^q\)

Differentiate implicitly w.r.t. \(x\):

\((p+q)(x+y)^{p+q-1}\bigl(1+\tfrac{dy}{dx}\bigr) = p\,x^{p-1}y^q \;+\; q\,x^p\,y^{q-1}\tfrac{dy}{dx}\)

Rearrange to collect \(\tfrac{dy}{dx}\):

\(\tfrac{dy}{dx}\bigl[(p+q)(x+y)^{p+q-1} - q\,x^p\,y^{q-1}\bigr] = p\,x^{p-1}y^q - (p+q)(x+y)^{p+q-1}\)

Use \((x+y)^{p+q-1}=\frac{x^p\,y^q}{x+y}\) to simplify:

\(\tfrac{dy}{dx} = \tfrac{y}{x}\)

∴ \(\displaystyle \frac{dy}{dx} = \frac{y}{x}\), independent of \(p\) and \(q\).

Hence, the correct answer is Option 4.

Differentiation of Implicit Functions Question 2:

If 2x + 2y = 2x+y, then \(\frac{d y}{d x}=\)

  1. 1 - 2y
  2. 1 - 2-y
  3. 1 + 2y
  4. 1 + 2-y
  5. 2y

Answer (Detailed Solution Below)

Option 1 : 1 - 2y

Differentiation of Implicit Functions Question 2 Detailed Solution

Concept:

  • \(\rm \frac{d}{dx}a^x=a^x\log a\)

Calculation:

Given 2x + 2y = 2x+y

We know that 2a+b = 2a⋅ 2b

⇒ 2x + 2y = 2x ⋅ 2y

⇒ \(\rm \frac{2^x+2^y}{2^x\cdot2^y}=1\)

⇒ 2-y + 2-x = 1  ..(1)

Differentiating the above equation with respect to x:

⇒ (-2- y\(\rm\frac{dy}{dx}\) - 2- x) log 2 = 0

⇒ \(\rm \frac{dy}{dx}=-\frac{2^{-x}}{2^{-y}}\)

⇒ \(\rm \frac{dy}{dx}=-\frac{1-2^{-y}}{2^{-y}}\)

⇒ \(\rm \frac{dy}{dx}\) = - 2y + 1

⇒ \(\rm \frac{dy}{dx}\) = 1 - 2y

The required value of  \(\rm \frac{dy}{dx}\) is 1 - 2y .  

Differentiation of Implicit Functions Question 3:

If \(2x^2 - 3xy + 4y^2 + 2x - 3y + 4 = 0, \) then \(\left( \frac{dy}{dx} \right)_{(3,2)}\) =

  1. -5
  2. \(\frac{5}{7}\)
  3. -2
  4. \(\frac{2}{7}\)

Answer (Detailed Solution Below)

Option 3 : -2

Differentiation of Implicit Functions Question 3 Detailed Solution

Calculation:

Given:

\(2x^2 - 3xy + 4y^2 + 2x - 3y + 4 = 0\)

Differentiating the given equation with respect to x, we get:

\(4x - 3\left(x\frac{dy}{dx} + y\right) + 8y\frac{dy}{dx} + 2 - 3\frac{dy}{dx} = 0\)

\(4x - 3x\frac{dy}{dx} - 3y + 8y\frac{dy}{dx} + 2 - 3\frac{dy}{dx} = 0\)

\((8y - 3x - 3)\frac{dy}{dx} = 3y - 4x - 2\)

\(\frac{dy}{dx} = \frac{3y - 4x - 2}{8y - 3x - 3}\) 

\(\left(\frac{dy}{dx}\right)_{(3,2)} = \frac{3(2) - 4(3) - 2}{8(2) - 3(3) - 3}\)

\(\left(\frac{dy}{dx}\right)_{(3,2)} = \frac{6 - 12 - 2}{16 - 9 - 3}\)

\(\left(\frac{dy}{dx}\right)_{(3,2)} = \frac{-8}{4}\)

\(\left(\frac{dy}{dx}\right)_{(3,2)} = -2\)

\(\left(\frac{dy}{dx}\right)_{(3,2)} = -2\)

Hence option 3 is correct

Differentiation of Implicit Functions Question 4:

For the curve y = αx2 + cos y + β, the value of \(\frac{dy}{dx}\) at (1, 0) is 2. Then the value of αβ is equal to

  1. 1
  2. -1
  3. 2
  4. -2
  5. 0

Answer (Detailed Solution Below)

Option 4 : -2

Differentiation of Implicit Functions Question 4 Detailed Solution

Calculation

\(y = \alpha x^2 + \cos y + \beta\)

Differentiate both sides with respect to x:

\(\frac{dy}{dx} = 2\alpha x - \sin y \frac{dy}{dx}\)

\(\frac{dy}{dx} (1 + \sin y) = 2\alpha x\)

\(\frac{dy}{dx} = \frac{2\alpha x}{1 + \sin y}\)

At (1, 0):

\(2 = \frac{2\alpha (1)}{1 + \sin 0}\)

\(2 = \frac{2\alpha}{1 + 0}\)

\(2 = 2\alpha\)

\(\alpha = 1\)

Substitute (1, 0) in the given equation:

\(0 = \alpha (1)^2 + \cos 0 + \beta\)

\(0 = \alpha + 1 + \beta\)

\(0 = 1 + 1 + \beta\)

\(\beta = -2\)

\(\alpha \beta = 1 \times (-2)\)

\(\alpha \beta = -2\)

\(\therefore \alpha \beta = -2\)

Hence option 4 is correct

Differentiation of Implicit Functions Question 5:

Derivative of \( \log { \left( \sec { \theta } +\tan { \theta } \right) } \) with respect to \( \sec { \theta } \) at \( \theta =\cfrac { \pi }{ 4 } \) is ...........

  1. \( 0 \)
  2. \( 1 \)
  3. \( \cfrac { 1 }{ \sqrt { 2 } } \)
  4. \( \sqrt { 2 } \)

Answer (Detailed Solution Below)

Option 2 : \( 1 \)

Differentiation of Implicit Functions Question 5 Detailed Solution

\( \cfrac { dg }{ df } =\cfrac { dg }{ dx } \cdot \cfrac { dx }{ df } =\cfrac { \cfrac { dg }{ dx } }{ \cfrac { df }{ dx } } =\cfrac { g'x }{ f'x } \)

\( \cfrac { d(\log(\sec\theta +\tan\theta )) }{ d(\sec\theta ) } =\cfrac { (\cfrac { \sec\theta \tan\theta +{ \sec }^{ 2 }\theta }{ \sec\theta +\tan\theta } ) }{ \sec\theta \tan\theta } =\cfrac { 1 }{ \tan\theta } =\cot\theta =\cot(\cfrac { \pi }{ 4 })=1 \)

Differentiation of Implicit Functions Question 6:

If y = 3e2x + 2e3x, then \(\frac{{{d^2}y}}{{d{x^2}}}\) - 5 \(\frac{{dy}}{{dx}}\) + 6y equals

  1. e2x + e3y
  2. 6(3e2x + 2e3x)
  3. 1
  4. More than one of the above 
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above

Differentiation of Implicit Functions Question 6 Detailed Solution

Given

y= 3e2x + 2e3x

Formula used

d(xn)/dx = nxn-1

Solution

⇒dy/dx = 3e2x(2) + 2e3x(3)

⇒dy/dx = 6(e2x + e3x)

⇒d2y/dx= 6(2e2x+3e3x)

As asked in the question,

⇒  \(\frac{{{d^2}y}}{{d{x^2}}}\) - 5 \(\frac{{dy}}{{dx}}\) + 6y =

⇒ 12e2x + 18e3x − 30e2x − 30e3x + 18e2x + 12e3x

⇒ 0.

The correct option is 4.

Differentiation of Implicit Functions Question 7:

What is the value of \(\rm dy\over dx\), if y2 + x2 + 3x + 5 = 0 at (0, -3)?

  1. 1
  2. 1.5
  3. 2
  4. 0.5
  5. None of these

Answer (Detailed Solution Below)

Option 4 : 0.5

Differentiation of Implicit Functions Question 7 Detailed Solution

Concept:

Chain Rule (Differentiation by substitution): If y is a function of u and u is a function of x

  • \(\rm {dy\over dx} = {dy\over du}× {du\over dx}\)

 

Calculation:

Given y2 + x2 + 3x + 5 = 0

Differentiating with respect to x, we get

2y \(\rm dy\over dx\) + 2x +3(1) + 0 = 0

2y\(\rm dy\over dx\) + 2x + 3 = 0 

2y \(\rm dy\over dx\) = -(2x + 3)

\(\rm {dy\over dx} = -{2x+3\over2y}\)

Now at (0, -3)

\(\rm {dy\over dx} = -{2(0)+3\over2(-3)}\)

\(\rm {dy\over dx} = -{3\over(-6)}\)

\(\rm {dy\over dx} = {1\over2}\) = 0.5

Get Free Access Now
Hot Links: teen patti stars teen patti bliss teen patti refer earn