Pythagorean Identities MCQ Quiz in मल्याळम - Objective Question with Answer for Pythagorean Identities - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 28, 2025
Latest Pythagorean Identities MCQ Objective Questions
Top Pythagorean Identities MCQ Objective Questions
Pythagorean Identities Question 1:
\(\rm sec \theta \sqrt{1 - sin^2\theta} = ?\)
Answer (Detailed Solution Below)
Pythagorean Identities Question 1 Detailed Solution
Formula used:
1 - sin2 θ = cos2 θ
Sec θ × cos θ = 1
Calculation:
Sec θ × √{1 - sin2 θ}
⇒ Sec θ × √{cos2 θ}
⇒ Sec θ × cos θ = 1
∴ The correct answer is 1.
Pythagorean Identities Question 2:
If sec2A + tan2A = 3, then what is the value of cot A?
Answer (Detailed Solution Below)
Pythagorean Identities Question 2 Detailed Solution
Given:
sec2A + tan2A = 3
Concept used:
sec2 α - tan2 α = 1
Calculation:
sec2A + tan2A = 3 ....(1)
sec2A - tan2A = 1 ....(2)
Solving (1) and (2) we get,
sec2A + tan2A - sec2A + tan2A = 3 - 1 = 2
2tan2 A = 2
tan2 A = 1
So, tan A = √1 = 1
Now, cot A = 1/1 = 1
∴ The value of cot A is 1.
Pythagorean Identities Question 3:
If sin θ + cos θ = \( \sqrt{3}\) cos θ, then the value of cot θ is:
Answer (Detailed Solution Below)
Pythagorean Identities Question 3 Detailed Solution
Given:
sin θ + cos θ = √3 cos θ
We need to find the value of cot θ.
Solution:
Step 1: Rearrange the given equation:
sin θ + cos θ = √3 cos θ
Rearranging gives:
sin θ = √3 cos θ - cos θ
sin θ = cos θ (√3 - 1).
Step 2: Use the definition of cot θ:
cot θ = cos θ / sin θ.
Substitute sin θ = cos θ (√3 - 1):
cot θ = cos θ / [cos θ (√3 - 1)].
Cancel cos θ from numerator and denominator:
cot θ = 1 / (√3 - 1).
Step 3: Rationalize the denominator:
cot θ = 1 / (√3 - 1) × (√3 + 1) / (√3 + 1).
cot θ = (√3 + 1) / (3 - 1).
cot θ = (√3 + 1) / 2.
The value of cot θ is (√3 + 1) / 2.
Pythagorean Identities Question 4:
If 3 sin A + 4 cos A = 5, then the value of tan A is:
Answer (Detailed Solution Below)
Pythagorean Identities Question 4 Detailed Solution
Given:
3 sin A + 4 cos A = 5
Formula Used:
Using the identity sin2 A + cos2 A = 1
Calculation:
Let sin A = x and cos A = y
3x + 4y = 5
And,
x2 + y2 = 1
⇒ x = 3/5 and y = 4/5
tan A = sin A / cos A
⇒ tan A = (3/5) / (4/5)
⇒ tan A = 3/4
The value of tan A is 3/4.
Pythagorean Identities Question 5:
Find the value of (sin θ + cos θ)2 + (sin θ - cos θ)2.
Answer (Detailed Solution Below)
Pythagorean Identities Question 5 Detailed Solution
Formula Used :
Sin2θ + Cos2θ = 1
Calculation :
⇒ (sin θ + cos θ)2 + (sin θ - cos θ)2
⇒ sin2θ + cos2θ + 2sinθcosθ + sin2θ + cos2θ - 2sinθcosθ
⇒ 2(sin2θ + cos2θ)
⇒ 2
∴ The correct answer is 2.
Pythagorean Identities Question 6:
sinA sinB=.______
Answer (Detailed Solution Below)
Pythagorean Identities Question 6 Detailed Solution
Given:
\sin A \sin B
Formula Used:
2 \(\sin A \sin B = \left[ \cos (A - B) - \cos (A + B) \right]\)
Calculation:
We know that:
2 \(\sin A \sin B = \left[ \cos (A - B) - \cos (A + B) \right]\)
Therefore,
sin A sin B =\(\frac{1}{2} \{ \cos(A - B) - \cos(A + B)\) }
Thus, the correct answer is option 4.
Pythagorean Identities Question 7:
If secθ + tanθ = x, then find sinθ.
Answer (Detailed Solution Below)
Pythagorean Identities Question 7 Detailed Solution
Given:
If sec θ + tan θ = x, find sinθ.
Formulae Used:
(secθ + tanθ) (secθ - tanθ) = 1
Solution:
sec θ + tan θ = x ---(1)
So, sec θ - tan θ = 1/x ---(2)
Subtracting equation (2) from equation (1):
sec θ + tan θ - (sec θ - tan θ) = x - 1/x
⇒ sec θ + tan θ - sec θ + tan θ = (x2 - 1)/x
⇒ 2 tan θ = (x2 - 1)/x
⇒ tan θ = (x2 - 1)/2x
We know that tan θ = p/b
So, p = (x2 - 1), b = 2x
h2 = p2 + b2 = (x2 - 1)2 + (2x)2
⇒ h2 = (x2)2 + 1 - 2x2 + 4x2
⇒ h2 = (x2)2 + 1 + 2x2
⇒ h2 = (x2 + 1)2
⇒ h = (x2 + 1)
So, sin θ = p/h = (x2 - 1) / (x2 + 1)
∴ The correct answer is option (3).
Pythagorean Identities Question 8:
What is the value of sec(t) if tan(t) = (1)/(3) ?
Answer (Detailed Solution Below)
Pythagorean Identities Question 8 Detailed Solution
Given:
\(\tan(t) = \frac{1}{3}\)
Formula Used:
\(\sec(t) = \sqrt{1 + \tan^2(t)}\)
Calculation:
\(\tan(t) = \frac{1}{3}\)
\(\tan^2(t) = \left(\frac{1}{3}\right)^2 = \frac{1}{9}\)
\(\sec(t) = \sqrt{1 + \tan^2(t)}\)
⇒ \(\sec(t) = \sqrt{1 + \frac{1}{9}}\)
⇒ \(\sec(t) = \sqrt{\frac{9}{9} + \frac{1}{9}}\)
⇒ \(\sec(t) = \sqrt{\frac{10}{9}}\)
⇒ \(\sec(t) = \frac{\sqrt{10}}{3}\)
The value of sec(t) is \(\frac{\sqrt{10}}{3}\) .
Pythagorean Identities Question 9:
The value of : \(\frac{1}{cosec \theta - \cot \theta} - \frac{1}{\sin \theta}\) is equal to:
Answer (Detailed Solution Below)
Pythagorean Identities Question 9 Detailed Solution
Calculations:
\(\frac{1}{cosec θ - \cot θ} - \frac{1}{\sin θ}\)
We have,
cosec θ - cot θ = (1/sinθ) - (cosθ/sinθ) = (1 - cos θ)/sin θ
So,
\(\frac{1}{cosec θ - \cot θ} - \frac{1}{\sin θ}\)
⇒ \(\frac{\sin θ}{1 - \cos θ} - \frac{1}{\sin θ}\)
⇒ \(\frac{\sin^2 θ - (1 - \cos θ)}{(1 - \cos θ) \sin θ}\)
⇒ \(\frac{\sin^2 θ - 1 + \cos θ}{(1 - \cos θ) \sin θ}\)
⇒ \(\frac{-(\cos^2 θ) + \cos θ}{(1 - \cos θ) \sin θ}\)
⇒ \(\frac{\cos θ (1 - \cos θ)}{(1 - \cos θ) \sin θ}\)
⇒ \(\frac{\cos θ}{\sin θ}\)
⇒ cot θ
∴ The correct answer is option (3).
Pythagorean Identities Question 10:
If cos(40° + x) = sin 30°, then the value of x is:
Answer (Detailed Solution Below)
Pythagorean Identities Question 10 Detailed Solution
Given:
cos(40° + x) = sin 30°
Formula used:
Cos 60° = sin 30° = 1/2
Calculation:
Cos (40° + x) = sin 30°
⇒ Cos (40° + x) = 1/2
⇒ Cos (40° + x) = cos 60
⇒ (40° + x) = 60°
⇒ x = 20°
∴ The correct answer is 20°.