Properties of Discrete Fourier Transform MCQ Quiz in मल्याळम - Objective Question with Answer for Properties of Discrete Fourier Transform - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 4, 2025

നേടുക Properties of Discrete Fourier Transform ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Properties of Discrete Fourier Transform MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Properties of Discrete Fourier Transform MCQ Objective Questions

Top Properties of Discrete Fourier Transform MCQ Objective Questions

Properties of Discrete Fourier Transform Question 1:

\(\rm x[n]\) and \(\rm X[k]\) are \(\rm DFT\) pairs where \(\rm X[k] = DFT [x[n]]\). The period is \(\rm N\). Then \(\rm X[N-k]\) is equal to

  1. \(\rm X[-k]\)

  2. \(\rm X^*[-k]\)

  3. \(\rm X^*[N-k]\)

  4. \(\rm X^*[k]\)

Answer (Detailed Solution Below)

Option 4 :

\(\rm X^*[k]\)

Properties of Discrete Fourier Transform Question 1 Detailed Solution

By definition

\(\rm \begin{array}{l} X\left[ k \right] = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{ - jk\frac{{2\pi n}}{N}}}\\ \rm \Rightarrow X\left[ {N - k} \right] = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right].{e^{ - j\frac{{\left( {N - k} \right)2\pi n}}{N}}}\\ \rm = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{jk\frac{{2\pi n}}{N}}}.{e^{ - j2\pi n}}\\ \rm = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{\frac{{jk2\pi n}}{N}}}\\ \rm \Rightarrow X\left[ {N - k} \right] = {\left( {\mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right].{e^{ - jk\frac{{2\pi n}}{N}}}} \right)^*} = {X^*}\left[ k \right] \end{array}\)

Properties of Discrete Fourier Transform Question 2:

\(\rm x\left[ n \right] = \left\{ { - 1,2, - 3,2, - 1} \right\}\)Then the value of \(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega \) ____.

Answer (Detailed Solution Below) 358 - 385.5

Properties of Discrete Fourier Transform Question 2 Detailed Solution

\(\rm x[n]\)  is discrete and aperiodic \(\rm \Rightarrow X\left( {{e^{j\omega }}} \right)\)is periodic and continuous.

\(\rm X\left( {{e^{j\omega }}} \right)\)is periodic with \(\rm 2π\).

Thus \(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = 3\left[ {\mathop \smallint \limits_0^{2\pi } {{\left| {X\left( {{e^{j\omega }}} \right)} \right|}^2}d\omega } \right]\)

Now from Parseval’s theorem.

\(\rm \frac{1}{{2\pi }}\mathop \smallint \limits_0^{2\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = \mathop \sum \limits_{n = - \infty }^\infty {\left| {x\left[ n \right]} \right|^2}\)

\(\rm \Rightarrow \mathop \smallint \limits_0^{2\pi } {\left| {X\left({e^{j\omega }}\right)} \right|^2}d\omega = 2\pi \mathop \sum \limits_{n = - \infty }^\infty {\left| {x\left[ n \right]} \right|^2}\)

\(\rm = 2\pi \left[ {1 + 4 + 9 + 4 + 1} \right]\)

\(\rm = 2\pi .19\)

Now,

\(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = 3\left[ {2\pi .19} \right] = 358.14\)

Get Free Access Now
Hot Links: teen patti rich teen patti game - 3patti poker teen patti master downloadable content teen patti master