State Space Analysis MCQ Quiz - Objective Question with Answer for State Space Analysis - Download Free PDF
Last updated on Jun 17, 2025
Latest State Space Analysis MCQ Objective Questions
State Space Analysis Question 1:
When converting the following system into the standard state space form x + 3x - 9x = 3sin (ωt) the resultant A matrix is
Answer (Detailed Solution Below)
State Space Analysis Question 1 Detailed Solution
Concept:
To convert a second-order differential equation into state-space form, define:
\(x_1 = x,\quad x_2 = \dot{x}\)Then: \( \dot{x}_1 = x_2,\quad \dot{x}_2 = \ddot{x} \)
Given differential equation:
\(\ddot{x} + 3\dot{x} - 9x = 3\sin(\omega t)\)
Rewriting:
\(\ddot{x} = -3\dot{x} + 9x + 3\sin(\omega t)\)
In terms of state variables:
- \(\dot{x}_1 = x_2\)
- \(\dot{x}_2 = 9x_1 - 3x_2 + 3\sin(\omega t)\)
So the state-space equation \(\dot{X} = AX + BU\) has:
A matrix:
\(\left(\begin{array}{cc} 0 & 1 \\ 9 & -3 \end{array}\right)\)
State Space Analysis Question 2:
The matrix used for calculating the controllability is
Answer (Detailed Solution Below)
State Space Analysis Question 2 Detailed Solution
Controllability Matrix in Control Systems
Definition: Controllability is a fundamental concept in control system theory, which determines whether a system's state can be driven to a desired state using appropriate control inputs over a finite duration. The controllability matrix is a mathematical tool used to check the controllability of a linear time-invariant (LTI) system.
State-Space Representation:
A linear time-invariant (LTI) system can be represented in state-space form as:
dx/dt = Ax + Bu
y = Cx + Du
- Here, x is the state vector, u is the input vector, y is the output vector, A is the system matrix, B is the input matrix, C is the output matrix, and D is the feedthrough matrix.
Controllability Matrix:
To determine the controllability of a system, the controllability matrix is defined as:
[B AB A2B ... An-1B]
- Here, A is the system matrix and B is the input matrix.
- The columns of the controllability matrix represent the influence of the input u through the dynamics of the system.
Explanation of Correct Option:
The correct option is:
Option 1: [B AB A2B...]
This representation is the standard form of the controllability matrix used in control system theory. The matrix is constructed by appending B, AB, A2B, and so on, up to An-1B, where n is the order of the system.
State Space Analysis Question 3:
1. A system is said to be completely controllable if it is possible to transfer the system state from any initial state X(to) to any desired state X(t) in specified finite time by a control vector u(t).
2. A system is said to be completely observable, if every state X(to) can be completely identified by measurements of the outputs y(t) over the time interval (0 ≤ t ≤ ∞).
Read the above two statements and select the correct option.
Answer (Detailed Solution Below)
State Space Analysis Question 3 Detailed Solution
Explanation:
System Controllability and Observability
In control system theory, the concepts of controllability and observability are fundamental for understanding the behavior and capabilities of a system. These properties determine whether a system can be controlled to achieve desired states and whether the internal states of the system can be inferred from external outputs, respectively.
Statement 1 Analysis:
Statement 1: "A system is said to be completely controllable if it is possible to transfer the system state from any initial state X(to) to any desired state X(t) in specified finite time by a control vector u(t)."
This statement defines the concept of controllability. A system is considered completely controllable if, given any initial state, it is possible to drive the system to any final state using an appropriate control input within a finite time. This property ensures that the system can be maneuvered to follow desired trajectories or reach specific states, which is crucial for the effective control and operation of the system.
The given statement accurately captures the essence of controllability. Therefore, Statement 1 is true.
Statement 2 Analysis:
Statement 2: "A system is said to be completely observable if every state X(to) can be completely identified by measurements of the outputs y(t) over the time interval (0 ≤ t ≤ ∞)."
This statement defines the concept of observability. A system is considered completely observable if the current state of the system can be determined from its outputs over a given time interval. This property is essential for system monitoring, state estimation, and feedback control, as it ensures that the internal states of the system can be inferred from external measurements.
The given statement accurately describes the concept of observability. Therefore, Statement 2 is true.
Correct Option Analysis:
The correct option is:
Option 2: Both Statement 1 and Statement 2 are true.
This option correctly identifies that both statements accurately describe the fundamental properties of controllability and observability in control system theory.
Additional Information
To further understand the analysis, let’s evaluate the other options:
Option 1: Statement 1 is true and Statement 2 is false.
This option is incorrect because both statements accurately describe the concepts of controllability and observability, so Statement 2 is not false.
Option 3: Both Statement 1 and Statement 2 are false.
This option is incorrect because both statements are true and provide accurate definitions of controllability and observability.
Option 4: Statement 2 is true and Statement 1 is false.
This option is incorrect because Statement 1 is true, as it correctly defines the concept of controllability.
Conclusion:
Understanding the concepts of controllability and observability is essential for the design and analysis of control systems. These properties ensure that the system can be effectively controlled and monitored. Both statements provided in the question accurately describe these concepts, making Option 2 the correct choice.
State Space Analysis Question 4:
The zero-input response of the following system \(\left[\begin{array}{l} \mathrm{x}_{1}^{\prime} \\ \mathrm{x}_{2}^{\prime} \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 1 & 1 \end{array}\right]\left[\begin{array}{l} \mathrm{x}_{1} \\ \mathrm{x}_{2} \end{array}\right] \text {and }\left[\begin{array}{l} \mathrm{x}_{1}(0) \\ \mathrm{x}_{2}(0) \end{array}\right]=\left[\begin{array}{l} 1 \\ 0 \end{array}\right]\) is given by -
Answer (Detailed Solution Below)
State Space Analysis Question 4 Detailed Solution
Concept
The zero-input response of a system is calculated as:
\(ZIR=ϕ(t)x(0)\)
where, ϕ(t) = State transition matrix
The state transition matrix is calculated as:
\(\phi(t)=L^{-1}[(sI-A)^{-1}]\)
Calculation
Given, \(A=\left[\begin{array}{ll} 1 & 0 \\ 1 & 1 \end{array}\right]\)
\(x(0)=\left[\begin{array}{c} 1 \\ 0 \end{array}\right]\)
\((sI-A)^{-1}=\left[\begin{array}{ll} s-1 & 0 \\ -1 & s-1 \end{array}\right]^{-1}\)
\((sI-A)^{-1}={1\over (s-1)^2}\left[\begin{array}{ll} s-1 & 0 \\ +1 & s-1 \end{array}\right]\)
\(\phi(t)x(0)={1\over (s-1)^2}\left[\begin{array}{c} s-1 \\ 1 \end{array}\right]\)
\(ZIR=\left[\begin{array}{c} {1\over s-1} \\ {1\over (s-1)^2} \end{array}\right]\)
Taking inverse Laplace, we get:
\(ZIR=\left[\begin{array}{c} \mathrm{e}^{\mathrm{t}} \\ \mathrm{te}^{\mathrm{t}} \end{array}\right]\)
State Space Analysis Question 5:
Consider the state-space description of an LTI system with matrices
\(A =\rm \begin{bmatrix}0&1\\\ -1&-2\end{bmatrix}, B=\rm \begin{bmatrix}0\\\ 1\end{bmatrix}, C=\rm \begin{bmatrix}3&-2\end{bmatrix}, D = 1\)
For the input, sin(𝜔𝑡), 𝜔 > 0, the value of 𝜔 for which the steady-state output of the system will be zero, is ___________ (Round off to the nearest integer)
Answer (Detailed Solution Below) 2
State Space Analysis Question 5 Detailed Solution
Given:
\(A =\rm \begin{bmatrix}0&1\\\ -1&-2\end{bmatrix}, B=\rm \begin{bmatrix}0\\\ 1\end{bmatrix}, C=\rm \begin{bmatrix}3&-2\end{bmatrix}, D = 1\)
Transfer function is given by,
T.F. = C[sI - A]-1B + D
\( {[s I-A]=\left[\begin{array}{cc} s & -1 \\ 1 & s+2 \end{array}\right]} \)
\([s I-A]^{-1}=\left[\begin{array}{cc} s & -1 \\ 1 & s+2 \end{array}\right]^{-1} \)
\( {[s I-A]^{-1}=\frac{1}{s(s+2)+1}\left[\begin{array}{cc} s+2 & 1 \\ -1 & s \end{array}\right]}\)
\(T . F .=\left[\begin{array}{ll} 3 & -2 \end{array}\right] \frac{1}{s(s+2)+1}\left[\begin{array}{cc} s+2 & 1 \\ -1 & s \end{array}\right]\left[\begin{array}{l} 0 \\ 1 \end{array}\right]+1 \)
\(T . F .=\frac{1}{s^2+2 s+1}\left[\begin{array}{ll} 3 & -2 \end{array}\right]\left[\begin{array}{ll} s+2 & 1 \\ -1 & s \end{array}\right]\left[\begin{array}{l} 0 \\ 1 \end{array}\right]+1 \)
\( T . F .=\frac{1}{s^2+2 s+1}\left[\begin{array}{ll} 3 & -2 \end{array}\right]\left[\begin{array}{l} 1 \\ s \end{array}\right]+1 \)
\(T . F .=\frac{3-2 s}{s^2+2 s+1}+1 \)
\(T . F=\frac{s^2+4}{s^2+2 s+1} \)
\(H(s)=\frac{s^2+4}{s^2+2 s+1}\)
s = jω
\(H(\mathrm{j} ω)=\frac{4-ω^2}{1+2 j ω-ω^2}\)
Steady state output of system is zero
4 - ω2 = 0
4 = ω2
ω = 2 rad/sec
Hence, the correct answer is 2.
Top State Space Analysis MCQ Objective Questions
The transfer function G(S) = C(SI - A)-1b of the system
x' = Ax + bu
y = Cx + du
has no pole-zero cancellation. The system
Answer (Detailed Solution Below)
State Space Analysis Question 6 Detailed Solution
Download Solution PDFState space representation:
ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)
y(t) is output
u(t) is input
x(t) is a state vector
A is a system matrix
This representation is continuous time-variant.
Controllability:
A system is said to be controllable if it is possible to transfer the system state from any initial state x(t0) to any desired state x(t) in a specified finite time interval by a control vector u(t)
Kalman’s test for controllability:
ẋ = Ax + Bu
Qc = {B AB A2B … An-1 B]
Qc = controllability matrix
If |Qc| = 0, system is not controllable
If |Qc|≠ 0, the system is controllable
Observability:
A system is said to be observable if every state x(t0) can be completely identified by measurement of output y(t) over a finite time interval.
Kalman’s test for observability:
Q0 = [CT ATCT (AT)2CT …. (AT)n-1 CT]
Q0 = observability testing matrix
If |Q0| = 0, system is not observable
If |Q0| ≠ 0, system is observable.
Duality property of controllability and observability:
- If the pair (A, B) is controllable then the pair (AT, BT) is observable.
- If the pair of (A, C) is observable then the pair of (AT, CT) is controllable.
If there are no pole-zero cancellations in the transfer function then the system is completely controllable and observable.
A system is represented by \(3\dfrac{dy}{dt}+2y=u\), what is the transfer function to the system?
Answer (Detailed Solution Below)
State Space Analysis Question 7 Detailed Solution
Download Solution PDFConcept:
A transfer function (TF) is defined as the ratio of Laplace transform of the output to the Laplace transform of the input by assuming initial conditions are zero.
TF = L[output] / L[input]
\(TF = \frac{{C\left( s \right)}}{{R\left( s \right)}}\)
For unit impulse input i.e. r(t) = δ(t)
⇒ R(s) = δ(s) = 1
Now transfer function = C(s)
Therefore, transfer function is also known as impulse response of the system.
Transfer function = L[IR]
IR = L-1 [TF]
Calculation:
Given differential equation is,
\(3\dfrac{dy}{dt}+2y=u\)
Laplace transform of the above equation is given by
\(\dfrac{dy}{dt} = sY(s)\), y(t) = Y(s), u(t) = U(s)
⇒ 3s Y(s) + 2 Y(s) = U(s)
⇒ Y(s) (3s + 2) = U(s)
∴ Transfer function is given by
\( \Rightarrow TF = \frac{{Y\left( s \right)}}{{U\left( s \right)}} = \frac{1}{{ 3s + 2}}\)
The system Ẋ = AX + Bu with \(A = \left[ {\begin{array}{*{20}{c}} { - 1}&2\\ 0&2 \end{array}} \right],\;B = \left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right]\) is
Answer (Detailed Solution Below)
State Space Analysis Question 8 Detailed Solution
Download Solution PDFThe given system is
Ẋ = AX + Bu
Where,
\(A = \left[ {\begin{array}{*{20}{c}} { - 1}&2\\ 0&2 \end{array}} \right]\:and\:B = \left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right]\)
We determine stability using characteristic equation (i.e. poles or eigenvalues of the system).
|sI - A| = 0
\(\left| {\left[ {\begin{array}{*{20}{c}} s&0\\ 0&s \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} { - 1}&2\\ 0&2 \end{array}} \right]} \right| = 0\)
\(\left| {\begin{array}{*{20}{c}} {s + 1}&{ - 2}\\ 0&{s - 2} \end{array}} \right| = 0\)
(s + 1)(s - 2) = 0
s = -1 and s = 2
i.e. the system has one pole in right half of the s-plane.
Hence, the system is unstable.
Now, the controllability matrix is given by:
CM = [B AB]
Where
\(\left[ {AB} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&2\\ 0&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2\\ 2 \end{array}} \right]\)
So,
\({C_M} = \left[ {\begin{array}{*{20}{c}} 0&2\\ 1&2 \end{array}} \right]\)
|CM| = -2 ≠ 0
Hence, the system is Controllable.
Consider the following properties attributed to state model of a system:
1. State model is unique.
2. Transfer function for the system is unique.
3. State model can be derived from transfer function of the system.
Which of the above statements are correct?Answer (Detailed Solution Below)
State Space Analysis Question 9 Detailed Solution
Download Solution PDF- In the transfer function model, initial conditions are assumed to be zero. In the state-space model, transfer function is not the starting point for the system analysis, and it considers the initial conditions of the system.
- The transfer function for the system is unique.
- The transfer function is applicable only for linear time-invariant systems. The state-space model is applicable to linear time-variant systems also.
- State-space representation of a system is not unique, it may have more than one representation.
- State model can be derived from transfer function of the system.
The state space representation of a first-order system is given as
ẋ = -x + u
y = x
Where, x is the state variable, u is the control input and y is the controlled output. Let u = -K.x be the control law, where K is the controller gain. To place a closed-loop pole at -2, the value of K is ______
Answer (Detailed Solution Below) 1
State Space Analysis Question 10 Detailed Solution
Download Solution PDFCalculation:
Given state model,
ẋ = - x + u
u = - Kx
ẋ = - x - Kx
ẋ = - (K + 1)x = A x
A = - (K + 1)
Charactestic equation of a state model is given by
|sI - A| = 0
⇒ sI = s
s - [- (K + 1)] = 0
s + K + 1 = 0
s = - 1 - K
Given that a pole is located at -2
⇒ s = -2
-2 = - 1 - K
K = 1
Find the state transition matrix \({\rm{\Phi }}\left( t \right)\;if\;A = \left[ {\begin{array}{*{20}{c}} 0&{ - 2}\\ 1&{ - 3} \end{array}} \right]\)
Answer (Detailed Solution Below)
State Space Analysis Question 11 Detailed Solution
Download Solution PDFState transition matrix:
It is defined as inverse Laplace transform of |sI - A|-1
⇒ L-1 |sI - A|-1 = eAt = ϕ(t)
Properties:
State transition matrix, ϕ(t) = eAt
- ϕ(0) = e(A0) = I, Identity matrix
- \({\phi ^{ - 1}}\left( t \right) = \phi \left( { - t} \right)\)
- ϕ(t1 + t2) = ϕ(t1) ϕ(t2)
- [ϕ(t)]n = ϕ(nt)
- ϕ(t2 – t1) ϕ (t2 – t0) = ϕ (t2 – t0) = ϕ (t1 – t0) ϕ (t2 – t1)
Application:
Given as state model, ẋ = A x(t)
Comparing with standard equation ẋ = A x(t) + B u(t)
\(\;A = \left[ {\begin{array}{*{20}{c}} 0&{ - 2}\\ 1&{ - 3} \end{array}} \right]\), B = 0
\( \Rightarrow \left( {sI - A} \right) = s\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 0&{ - 2}\\ 1&{ - 3} \end{array}} \right]\)
\(= \left[ {\begin{array}{*{20}{c}} s&{0 + 2}\\ {0 - 1}&{s + 3} \end{array}} \right]\)
\({\left( {sI - A} \right)^{ - 1}} = \frac{{adj\left( {sI - A} \right)}}{{\left| {sI - A} \right|}} = \frac{{\left[ {\begin{array}{*{20}{c}} {s + 3}&{ - 2}\\ 1&s \end{array}} \right]}}{{s\left( {s + 3} \right) + 2}}\)
\({\left[ {sI - A} \right]^{ - 1}} = \frac{1}{{\left( {s + 1} \right)\left( {s + 2} \right)}}\left[ {\begin{array}{*{20}{c}} {s + 3}&{ - 2}\\ 1&s \end{array}} \right]\)
\({L^{ - 1}}{\left[ {sI - A} \right]^{ - 1}} = {L^{ - 1}}\left[ {\begin{array}{*{20}{c}} {\frac{{s + 3}}{{\left( {s + 1} \right)\left( {s + 2} \right)}}}&{\frac{{ - 2}}{{\left( {s + 1} \right)\left( {s + 2} \right)}}}\\ {\frac{1}{{\left( {s + 1} \right)\left( {s + 2} \right)}}}&{\frac{s}{{\left( {s + 1} \right)\left( {s + 2} \right)}}} \end{array}} \right]\)
\(= {L^{ - 1}}\left[ {\begin{array}{*{20}{c}} {\frac{2}{{s + 1}} - \frac{1}{{s + 2}}}&{\frac{{ - 2}}{{\left( {s + 1} \right)}} + \frac{2}{{\left( {s + 2} \right)}}}\\ {\frac{1}{{s + 1}} - \frac{1}{{s + 2}}}&{\frac{{ - 1}}{{\left( {s + 1} \right)}} + \frac{2}{{\left( {s + 2} \right)}}} \end{array}} \right]\)
\(\phi \left( t \right) = \left[ {\begin{array}{*{20}{c}} {2{e^{ - t}} - {e^{ - 2t}}}&{ - 2{e^{ - t}} + 2{e^{ - 2t}}}\\ {{e^{ - t}} - {e^{ - 2t}}}&{ - {e^{ - t}} + 2{e^{ - 2t}}} \end{array}} \right]\)
Shortcut TrickShortcut Method to finding Adj (A)
Let A = \(\left[ {\begin{array}{*{20}{c}} {\rm{a}}&b\\ {\rm{c}}&{\rm{d}} \end{array}} \right]\)
Adj A = \(\left[ {\begin{array}{*{20}{c}} {\rm{d}}&{ - b}\\ { - {\rm{c}}}&{\rm{a}} \end{array}} \right]\)
Note: Interchange the diagonal elements and change the sign of remaining elements.
An unforced linear time-invariant (LTI) system is represented by:
\(\left[ {\begin{array}{*{20}{c}} {{{\dot x}_1}}\\ {{{\dot x}_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&0\\ 0&{ - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right]\)
If the initial condition are x1(0) = 1 and x2(0) = -1, the solution of the state equation isAnswer (Detailed Solution Below)
State Space Analysis Question 12 Detailed Solution
Download Solution PDFConcept:
Solution of state equation is given as:
x(t) = ϕ(t) x(0)
Where,
ϕ(t) = state transition matrix and
ϕ(t) = L-1 {(sI-A)-1}
Analysis:
\(A = \left[ {\begin{array}{*{20}{c}} { - 1}&0\\ 0&{ - 2} \end{array}} \right]\)
\(sI - A = \left[ {\begin{array}{*{20}{c}} s&0\\ 0&s \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} { - 1}&0\\ 0&{ - 2} \end{array}} \right]\)
\( = \left[ {\begin{array}{*{20}{c}} {s + 1}&0\\ 0&{s + 2} \end{array}} \right]\)
\({\left( {sI - A} \right)^{ - 1}} = \frac{1}{{\left( {s + 1} \right)\left( {s + 2} \right)}}\left[ {\begin{array}{*{20}{c}} {s + 2}&0\\ 0&{s + 1} \end{array}} \right]\)
\( = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{s + 1}}}&0\\ 0&{\frac{1}{{s + 2}}} \end{array}} \right]\)
\(\phi \left( t \right) = {L^{ - 1}}\left\{ {{{\left( {sI - A} \right)}^{ - 1}}} \right\}\)
\( = \left[ {\begin{array}{*{20}{c}} {{e^{ - t}}}&0\\ 0&{{e^{ - 2t}}} \end{array}} \right]\)
x(t) = ϕ(t) x(0)
\(x\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{e^{ - t}}}&0\\ 0&{{e^{2t}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1\\ { - 1} \end{array}} \right]\)
\(\left[ {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{x_2}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{e^{ - t}}}\\ { - {e^{ - 2t}}} \end{array}} \right]\)
x1(t) = e-t and x2(t) = -e-2t
The state transition matrix (t) is:
\(\left[ {\begin{array}{*{20}{c}} {x_1^{'}}\\ {x_2^{'}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 2}&{ - 3} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{x_2}\left( t \right)} \end{array}} \right]\)
Obtain the inverse of the state transition matrix, ϕ-1(t)Answer (Detailed Solution Below)
State Space Analysis Question 13 Detailed Solution
Download Solution PDFState transition matrix:
It is defined as inverse Laplace transform of |sI - A|-1
⇒ L-1 |sI - A|-1 = eAt = ϕ(t)
Properties:
State transition matrix, ϕ(t) = eAt
- ϕ(0) = e(A0) = I, Identity matrix
- \({\phi ^{ - 1}}\left( t \right) = \phi \left( { - t} \right)\)
- ϕ(t1 + t2) = ϕ(t1) ϕ(t2)
- [ϕ(t)]n = ϕ(nt)
- ϕ(t2 – t1) ϕ (t2 – t0) = ϕ (t2 – t0) = ϕ (t1 – t0) ϕ (t2 – t1)
Application:
Given as state model, ẋ = A x(t)
Comparing with standard equation ẋ = A x(t) + B u(t)
\(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 2}&{ - 3} \end{array}} \right],B = 0\)
\(\left[ {sI - A} \right] = \left[ {\begin{array}{*{20}{c}} s&0\\ 0&s \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 2}&{ - 3} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} s&{ - 1}\\ 2&{s + 3} \end{array}} \right]\)
\({\left[ {sI - A} \right]^{ - 1}} = \frac{1}{{s\left( {s + 3} \right) + 2}}\left[ {\begin{array}{*{20}{c}} {s + 3}&1\\ { - 2}&s \end{array}} \right]\)
\( = \left[ {\begin{array}{*{20}{c}} {\frac{{\left( {s + 3} \right)}}{{\left( {s + 1} \right)\left( {s + 2} \right)}}}&{\frac{1}{{\left( {s + 1} \right)\left( {s + 2} \right)}}}\\ { - \frac{2}{{\left( {s + 1} \right)\left( {s + 2} \right)}}}&{\frac{s}{{\left( {s + 1} \right)\left( {s + 2} \right)}}} \end{array}} \right]\)
Taking inverse Laplace transform,
\({e^{At}} = \left[ {\begin{array}{*{20}{c}} {2{e^{ - t}} - {e^{ - 2t}}}&{{e^{ - t}} - {e^{ - 2t}}}\\ { - 2{e^{ - t}} + 2{e^{ - 2t}}}&{ - {e^{ - t}} + 2{e^{ - 2t}}} \end{array}} \right]\)
\({e^{ - At}} = \left[ {\begin{array}{*{20}{c}} {2{e^t} - {e^{2t}}}&{{e^t} - {e^{2t}}}\\ { - 2{e^t} + 2{e^{2t}}}&{ - {e^t} + 2{e^{2t}}} \end{array}} \right]\)
Consider the state space realization
\(\left[ {\begin{array}{*{20}{c}} {{{\dot x}_1}\left( t \right)}\\ {{{\dot x}_2}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&0\\ 0&{ - 9} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{x_2}\left( t \right)} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0\\ {45} \end{array}} \right]u\left( t \right),\) with the initial condition \(\left[ {\begin{array}{*{20}{c}} {{x_1}\left( 0 \right)}\\ {{x_2}\left( 0 \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right].\)
where u(t) denotes the unit step function. The value of
\(\mathop {\lim }\limits_{t \to \infty } \left| {\sqrt {x_1^2\left( t \right) + x_2^2\left( t \right)} } \right|\) is ________.
Answer (Detailed Solution Below) 4.95 - 5.01
State Space Analysis Question 14 Detailed Solution
Download Solution PDFThe total response of the system is given by
X(t) = ZIR + ZSR
Where,
ZIR = Zero input response
ZSR = Zero state response
ZIR = et x(0)
ZSR = L-1 [ϕ(s) B U(s)]
Where
Φ(s) = (SI - A)-1
Calculations:
ZIR = eat x(0)
X(0) = \(\left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]\;\)
\(\Rightarrow ZIR = \left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]\)
ZSR = L-1 [ϕ (s) B U(s)]
\(SI\;A = \left[ {\begin{array}{*{20}{c}} s&0\\ 0&{s + 9} \end{array}} \right]\)
\(Adj\;\left( {sI - A} \right) = \left[ {\begin{array}{*{20}{c}} {s+9}&0\\ 0&{s} \end{array}} \right]\)
\(\phi \left( S \right) = {\left( {sI - A} \right)^{ - 1}} = \frac{{Adj\;\left[ {sI - A} \right]}}{{\left| {sI - a} \right|}}\)
\(= \left[ {\begin{array}{*{20}{c}} {\frac{1}{s}}&0\\ 0&{\frac{1}{{s + 9}}} \end{array}} \right]\)
\(ZSR = {L^{ - 1}}\left[ {\left( {\begin{array}{*{20}{c}} {\frac{1}{s}}&0\\ 0&{\frac{1}{{s + 9}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} 0\\ {45} \end{array}} \right)\left( {\frac{1}{s}} \right)} \right]\)
CI \(= {L^{ - 1}}\left[ {\begin{array}{*{20}{c}} 0\\ {\frac{{45}}{{s\left( {s + 9} \right)}}\;} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0\\ {5\left( {1 - {e^{ - 9t}}} \right)} \end{array}} \right]\)
x1(t) = 0
x2 (t) = 5 (1 – e-9t)
\(\mathop {\lim }\limits_{t \to \infty } \left| {\sqrt {x_1^2\left( t \right) + x_2^2\left( t \right)} } \right|\)
\(= \sqrt {0 + {5^2}}\)
= 5
Consider a system governed by the following equations
\(\frac{{d{x_1}\left( t \right)}}{{dt}} = {x_2}\left( t \right) - {x_1}\left( t \right)\)
\(\frac{{d{x_2}\left( t \right)}}{{dt}} = {x_1}\left( t \right) - {x_2}\left( t \right)\)
The initial conditions are such that \({x_1}\left( 0 \right) < {x_2}\left( 0 \right) < \;\infty .\) Let \({x_{1f}} = \mathop {\lim }\limits_{t \to \infty } {x_1}\left( t \right)\) and \({x_{2f}} = \mathop {\lim }\limits_{t \to \infty } {x_2}\left( t \right)\). Which one of the following is true?
Answer (Detailed Solution Below)
State Space Analysis Question 15 Detailed Solution
Download Solution PDF\(\frac{{d{x_1}\left( t \right)}}{{dt}} = \mathop {\mathop x\nolimits_1 }\limits^. \left( t \right) = {x_2}\left( t \right) - {x_1}\left( t \right)\)
\(\frac{{d{x_2}\left( t \right)}}{{dt}} = \mathop {\mathop x\nolimits_2 }\limits^. \left( t \right) = {x_1}\left( t \right) - {x_2}\left( t \right)\)
\(\left[ {\begin{array}{*{20}{c}} {\mathop {\mathop x\nolimits_1 }\limits^. \left( t \right)}\\ {\mathop {\mathop x\nolimits_2 }\limits^. \left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&1\\ 1&{ - 1} \end{array}} \right]\;\left[ {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{x_2}\left( t \right)} \end{array}} \right]\)
\(A = \left[ {\begin{array}{*{20}{c}} { - 1}&1\\ 1&{ - 1} \end{array}} \right]\)
\(\phi \left( t \right) = {e^{at}} = {L^{ - 1}}\left[ {{{\left( {sI - A} \right)}^{ - 1}}} \right]\)
\(sI - A = \left[ {\begin{array}{*{20}{c}} s&0\\ 0&s \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} { - 1}&1\\ 1&{ - 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {s + 1}&{ - 1}\\ { - 1}&{s + 1} \end{array}} \right]\)
\({\left[ {sI - A} \right]^{ - 1}} = \frac{1}{{{{\left( {s + 1} \right)}^2} - 1}}\left[ {\begin{array}{*{20}{c}} {s + 1}&1\\ 1&{s + 1} \end{array}} \right]\)
\(= \frac{1}{{s\left( {s + 2} \right)}}\left[ {\begin{array}{*{20}{c}} {s + 1}&1\\ 1&{s + 1} \end{array}} \right]\)
\(= \left[ {\begin{array}{*{20}{c}} {\frac{{s + 1}}{{s\left( {s + 2} \right)}}}&{\frac{1}{{s\left( {s + 2} \right)}}}\\ {\frac{1}{{s\left( {s + 2} \right)}}}&{\frac{{s + 1}}{{s\left( {s + 2} \right)}}} \end{array}} \right]\)
\(= \left[ {\begin{array}{*{20}{c}} {\frac{1}{{2s}} + \frac{1}{{2\left( {s + 2} \right)}}}&{\frac{1}{{2s}} - \frac{1}{{2\left( {s + 2} \right)}}}\\ {\frac{1}{{2s}} - \frac{1}{{2\left( {s + 2} \right)}}}&{\frac{1}{{2s}} - \frac{1}{{2\left( {s + 2} \right)}}} \end{array}} \right]\)
\(\phi \left( t \right) = {L^{ - 1}}\left[ {{{\left( {sI - A} \right)}^{ - 1}}} \right]\)
\(= \frac{1}{2}\left[ {\begin{array}{*{20}{c}} {1 + {e^{ - 2t}}}&{1 - {e^{ - 2t}}}\\ {1 - {e^{ - 2t}}}&{1 + {e^{ - 2t}}} \end{array}} \right]\)
\(x\left( t \right) = \phi \left( t \right)\;x\left( 0 \right) = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} {1 + {e^{ - 2t}}}&{1 - {e^{ - 2t}}}\\ {1 - {e^{ - 2t}}}&{1 + {e^{ - 2t}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}\left( 0 \right)}\\ {{x_2}\left( 0 \right)} \end{array}} \right]\)
\(x\left( t \right) = \frac{1}{2}\;\left[ {\begin{array}{*{20}{c}} {{x_1}\left( 0 \right) + {x_2}\left( 0 \right) + {e^{ - 2t}}\left( {{x_1}\left( 0 \right) - {x_2}\left( 0 \right)} \right)}\\ {{x_1}\left( 0 \right) + {x_2}\left( 0 \right) + {e^{ - 2t}}\left( {{x_2}\left( 0 \right) - {x_1}\left( 0 \right)} \right)} \end{array}} \right]\)
\({x_{1f}} = \mathop {{\rm{lt}}}\limits_{t \to \infty } {x_1}\left( t \right) = \frac{1}{2}\left( {{x_1}\left( 0 \right) + {x_2}\left( 0 \right)} \right)\)
\({x_{2f}} = \mathop {{\rm{lt}}}\limits_{t \to \infty } {x_2}\left( t \right) = \frac{1}{2}\left( {{x_1}\left( 0 \right) + {x_2}\left( 0 \right)} \right)\)
Given that, x1(0) < x2 (0) < ∞
⇒ x1f = x2f < ∞