Quantum Mechanics MCQ Quiz - Objective Question with Answer for Quantum Mechanics - Download Free PDF

Last updated on Jun 25, 2025

Latest Quantum Mechanics MCQ Objective Questions

Quantum Mechanics Question 1:

The hyperfine splitting of the ground state of the hydrogen atom is given as
                                                                                 \( \Delta E \propto \frac{g_p g_e}{m_p m_e a^3} \)
where 𝑔p and 𝑔e are the nuclear and electron Landê 𝑔 factors respectively, and 𝑎 is the orbital radius of the ground state. It is given that 𝑔 (proton) = 5.59. In Hydrogen, transition between these split levels corresponds to radiation of wavelength 21 cm . 
If the proton is replaced by a positron, the corresponding wavelength would be

  1. 2.6 mm
  2. 3.2 mm
  3. 3.2 cm  
  4. 2.6 cm 

Answer (Detailed Solution Below)

Option 2 : 3.2 mm

Quantum Mechanics Question 1 Detailed Solution

Calculation:

ΔEee ∝ (gege) / (me2a3) = ge2 / (me2a3)

ΔEH ∝ (gpge) / (mpmea3)

⇒ ΔEee / ΔEH = (ge2 / me2) ÷ (gpge / mpme) = (ge / gp) × (mp / me)

Given:

gp = 5.59

ge ≈ 2

mp / me ≈ 1836

So: ΔEee / ΔEH = (2 / 5.59) × 1836 ≈ 656.6

ΔEee / ΔEH = (2 / 5.59) × 1836 ≈ 656.6

Thus, energy increases by a factor of ≈ 656.6, and since energy and wavelength are inversely related (ΔE = hc / λ):

λee / λH = ΔEH / ΔEee ≈ 1 / 656.6

λee = 21 cm / 656.6 ≈ 0.032 cm = 3.2 mm

Quantum Mechanics Question 2:

A spherical cavity of radius 𝑟0 has an impenetrable wall. A quantum particle of mass 𝑚 inside the cavity is in its ground state. The pressure exerted on the cavity wall is 

  1. \(\quad \frac{\pi \hbar^2}{4 m r_0^5} \quad\)
  2. \(\quad \frac{\pi \hbar^2}{m r_0^5} \quad\)

  3. \(\quad \frac{\pi^2 \hbar^2}{2 m r_0^5} \quad\)
  4. \(\quad \frac{\pi^2 \hbar^2}{4 m r_0^5}\)

Answer (Detailed Solution Below)

Option 1 : \(\quad \frac{\pi \hbar^2}{4 m r_0^5} \quad\)

Quantum Mechanics Question 2 Detailed Solution

Calculation:

The energy E of the particle is given by:

E = (ℎ2 k2) / (2m) = (ℎ2 π2) / (2m r02)

To find the pressure, we use the thermodynamic relation: P = − (∂E / ∂V), where V is the volume of the sphere.

The volume V of the sphere is:
V = (4/3) π r03

dE / dr0 = ∂/∂r0 [ (ℎ2 π2) / (2m r02) ] = − (ℎ2 π2) / (m r03)

dV / dr0 = ∂/∂r0 [ (4/3) π r03 ] = 4 π r02

⇒ dE / dV = (dE / dr0) / (dV / dr0) = [ − (ℎ2 π2) / (m r03) ] / (4 π r02) = − (ℎ2 π) / (4m r05)

P = − dE / dV = (ℎ2 π) / (4m r05)

Thus, the pressure exerted on the cavity wall is given by option 1.

Quantum Mechanics Question 3:

For a system of two electrons, define an operator 
                                                                      \( \hat{A} = \frac{3}{a^2} \left( \hat{S}_1 \cdot \vec{a} \right) \left( \hat{S}_2 \cdot \vec{a} \right) - \hat{S}_1 \cdot \hat{S}_2 \)
where 𝑎⃗ is an arbitrary vector, and 𝑆ˆH and 𝑆ˆH are spin operators. The eigenvalues of 𝐴ˆ (in units of ℏ2 ) are 

  1. \(\quad -1, 1, \frac{3}{2}, \frac{3}{2} \quad\)
  2. \(\quad -1, -\frac{1}{2}, -\frac{1}{2}, 0 \quad\)
  3. \(\quad 1, \frac{1}{2}, \frac{3}{2}, \frac{3}{2} \quad\)
  4. \(\quad 0, \frac{1}{2}, \frac{1}{2}, -1\)

Answer (Detailed Solution Below)

Option 1 : \(\quad -1, 1, \frac{3}{2}, \frac{3}{2} \quad\)

Quantum Mechanics Question 3 Detailed Solution

Calculation:

 = (3 / a2) ( S1 · a )( S2 · a ) − S1 · S2

⇒ Â = (3 / a2) a2 ( S1 · n̂ )( S2 · n̂ ) − (1/2)(S2 − S12 − S22) = 3m1m2 − (1/2)(S(S+1) − S1(S1+1) − S2(S2+1))

⇒ S1 = 1/2, S2 = 1/2, S = 0, 1 and m1 = 1/2, −1/2; m2 = 1/2, −1/2

For S = 0: ⇒ Â = 3m1m2 − (1/2)(0 − 3/2) ⇒ = 3m1m2 + 3/4 ⇒ Hence S = 0 is singlet state so

  • For m1 = 1/2, m2 = −1/2 or m1 = −1/2, m2 = 1/2 ⇒ λ1 = −3/4 − (1/2)(0 − 3/2) = 0

For S = 1: ⇒ 3m1m2 − (1/2)(2 − 3/2) = 3m1m2 − 1/4

  • m1 = 1/2, m2 = 1/2 ⇒ λ2 = (3/4) − 1/4 = 1/2
  • m1 = −1/2, m2 = −1/2 ⇒ λ3 = (3/4) − 1/4 = 1/2
  • m1 = 1/2, m2 = −1/2 and m1 = −1/2, m2 = 1/2 ⇒ λ4 = (−3/4) − 1/4 = −1

Quantum Mechanics Question 4:

A particle of mass 𝑚, moving in one-dimension is subjected to the potential 
                                                                  \( V(x) = \begin{cases} V_0 \delta(x - a) & 0 < x < 2a \\ \infty & \text{otherwise} \end{cases} \)
The energy eigenvalues 𝐸 satisfy 

  1. \(\quad \tan \frac{a \sqrt{2m}}{\hbar} = \frac{\hbar}{V_0} \sqrt{\frac{2E}{m}} \quad\)
  2. \(\quad \tanh \frac{a \sqrt{2mE}}{\hbar} = +\frac{\hbar}{V_0} \sqrt{\frac{2E}{m}}\)
  3. \(\quad \tan \frac{a \sqrt{2mE}}{\hbar} = -\frac{\hbar}{V_0} \sqrt{\frac{2E}{m}} \quad\)
  4. \(\quad \tanh \frac{a \sqrt{2mE}}{\hbar} = -\frac{\hbar}{V_0} \sqrt{\frac{2E}{m}}\)

Answer (Detailed Solution Below)

Option 3 : \(\quad \tan \frac{a \sqrt{2mE}}{\hbar} = -\frac{\hbar}{V_0} \sqrt{\frac{2E}{m}} \quad\)

Quantum Mechanics Question 4 Detailed Solution

Solution:

ψL = A sin(kx), x < a   and   ψR = B sin(k(x − 2a))

At x = a, wave function is continuous ⇒ A sin(ka) = −B sin(ka)

⇒ A = −B

⇒ − (ℎ2 / 2m) (d2ψ / dx2) + V0 δ(x − a) ψ = Eψ       integrating both sides

⇒ − (ℎ2 / 2m) ∫a−εa+ε d2ψ/dx2 dx + V0a−εa+ε δ(x − a) ψ dx = ∫a−εa+ε Eψ dx

⇒ (− ℎ2 / 2m) (dψ/dx)a+εa−ε + V0 ψ(a) = 0

⇒ (− ℎ2 / 2m) (−Ak cos(ka) − kA cos(ka)) + V0 sin(ka) = 0

⇒ (ℎ2 / 2m)(2kA cos(ka)) + V0 sin(ka) = 0

⇒ (ℎ2 / m) k cos(ka) = − V0 sin(ka)   ⇒   tan(ka) = (−ℎ2k) / (mV0)   where   k = √(2mE / ℎ2)

⇒ tan( a √(2mE) / ℎ ) = − (ℎ / V0) √(2E / m)

Quantum Mechanics Question 5:

A particle of mass 𝑚 is bound in one dimension by the potential 𝑉(𝑥)=𝑉0𝛿(𝑥) with 𝑉o<0. If the probability of finding it in the region |𝑥|<𝑎 is 0.25 , then a is 

  1. \(\quad \frac{\hbar^2}{4 m V_0} \ln \frac{3}{4} \quad\)
  2. \(\quad \frac{\hbar^2}{2 m V_0} \ln \frac{3}{4} \quad\)
  3. \(\quad \frac{\hbar^2}{4 m V_0} \ln \frac{1}{4} \quad\)
  4. \(\quad \frac{\hbar^2}{2 m V_0} \ln \frac{1}{4}\)

Answer (Detailed Solution Below)

Option 2 : \(\quad \frac{\hbar^2}{2 m V_0} \ln \frac{3}{4} \quad\)

Quantum Mechanics Question 5 Detailed Solution

Solution:

ψ = √γ exp(−γ|x|), −∞ < x < ∞ where γ = √(−2mE / ℏ2)

Energy E = −(mV02) / (2ℏ2)    so γ = √(−2mV02 / ℏ2) = mV0 / ℏ2

Probability to find x < |a|2 = ∫−aa |ψ|2 dx = (1/4) = γ ∫−aa exp(−2γx) dx = 2γ ∫0a exp(−2γx) dx = 1/4

⇒ (2mV0 / ℏ2) × (e−2γa − 1) / (−2γ) = −exp(−2γa) + 1 = 1/4

⇒ −exp(−2γa) = −3/4 ⇒ exp(−2γa) = 3/4 ⇒ ln(3/4) = −2γa

⇒ a = −(1 / 2γ) ln(3/4) = (1 / 2) × (ℏ2 / mV0) ln(4/3)

Final Answer: a = (ℏ2 / 2mV0) ln(4/3)

Top Quantum Mechanics MCQ Objective Questions

The value of \(\langle L_x^2 \rangle\) in the state |φ〉 for which \(L^2|\varphi\rangle=6 \hbar^2|\varphi\rangle\) and \(L_z|\varphi\rangle=2 \hbar|\varphi\rangle\), is

  1. 0
  2. 4ℏ2
  3. 2ℏ2
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Quantum Mechanics Question 6 Detailed Solution

Download Solution PDF

Concept:

We are using properties of angular momentum viz-\(=^2+^2+^2\) and by putting given values of \(L\) and \(L_z\) we can find value of \(L_x\).

Explanation:

 Given,

  •  \(L^2|\phi>=6\hbar^2|\phi>\)
  • \(L_z|\phi>=2\hbar|\phi>\)

Here L is angular momentum and \(\hbar\) is Planck's constant

Using angular momentum formula, we can write expectation values of angular momentum as

  • \(=^2+^2+^2\)

Applying ket, bra operator on angular momentum operator, we get

  • \(<\phi|L^2|\phi>=<\phi|L_x^2|\phi>+<\phi|L_y^2|\phi>+<\phi|L_z^2|\phi>\)

 

  • \(<\phi|L^2|\phi>=<\phi|L_x^2|\phi>+<\phi|L_y^2|\phi>+<\phi|L_z^2|\phi>\)

 

Using, \(<\phi|\phi>=1\), and putting given values of \(L\) and\(L_z\) we get,

  • \(6\hbar^2=++4\hbar^2\)
  • Now, \(\)\(=\)

we get, \(\frac {6\hbar^2-4\hbar^2} {2}=\)

  • \(=\hbar^2\)

The correct answer is \(=\hbar^2\)

 

The Hamiltonian of a two-dimensional quantum harmonic oscillator is \(H=\frac{p_x^2}{2 m}+\frac{p_y^2}{2 m}+\frac{1}{2} m ω^2 x^2+2 m ω^2 y^2\) where m and ω are positive constants. The degeneracy of the energy level \(E=\frac{27}{2} \hbar \omega\) is

  1. 14
  2. 13
  3. 8
  4. 7

Answer (Detailed Solution Below)

Option 4 : 7

Quantum Mechanics Question 7 Detailed Solution

Download Solution PDF

Concept:

The given Hamiltonian is for the Anharmonic Oscillator. We will compare the given Hamiltonian with the equation of the Hamiltonian Anharmonic oscillator.

  •  \(H=\frac{p_x^2}{2 m}+\frac{p_y^2}{2 m}+\frac{1}{2} m ω^2 x^2+2 m ω^2 y^2\)
  • \(H=\frac{p_x^2}{2 m}+\frac{p_y^2}{2 m}+\frac{1}{2} m ω^2 x^2+\frac {1}{2}m (2ω)^2 y^2\)

 

Explanation:

  • \(H=\frac{p_x^2}{2 m}+\frac{p_y^2}{2 m}+\frac{1}{2} m ω^2 x^2+2 m ω^2 y^2\)
  • \(H=\frac{p_x^2}{2 m}+\frac{p_y^2}{2 m}+\frac{1}{2} m ω^2 x^2+\frac {1}{2}m (2ω)^2 y^2\)
  • \(\omega_x=\omega\)\(\omega_y=2\omega\)
  • \(E= (n_x+\frac{1}{2})\hbar\omega_x+(n_y+\frac{1}{2})\hbar\omega_y\)

This is the formula for energy in an oscillator in two-dimension.

Now, \(E=\)\(\frac{27}{2} \hbar \omega\)(given)

  • \(\frac{27}{2} \hbar \omega\)\(= (n_x+\frac{1}{2})\hbar\omega_x+(n_y+\frac{1}{2})\hbar\omega_y\)
  • Substitute values of \(\omega_x\) and \(\omega_y\) in terms of \(\omega\)
  • \(\frac{27}{2} \hbar \omega\)\(= (n_x+\frac{1}{2})\hbar\omega+2(n_y+\frac{1}{2})\hbar\omega\)
  • \(\frac {27}{2}=n_x+\frac{1} {2}+2n_y+1\)
  • \(12=n_x+2n_y\)
  • \(n_x\) should be even to satisfy the equation.
  • \(n_x\)\(=0,2,4,6,8,10,12\) ; \(n_y=6,5,4,3,2,1,0\)
  • \((n_x,n_y)=(0,6),(2,5),(4,4), (6,3), (8,2),(10,1), (12,0)\)
  • So, the degeneracy of the energy level \(E=\)\(\frac{27}{2} \hbar \omega\) is 7.

So, the correct answer is 7.

Two distinguishable non-interacting particles, each of mass m are in a one-dimensional infinite square well in the interval [0, a]. If x1 and x2 are position operators of the two particles, the expectation value 〈x1x2〉 in the state in which one particle is in the ground state and the other one is in the first excited state, is

  1. \(\frac{1}{2} a^2\)
  2. \(\frac{1}{2} \pi^2 a^2\)
  3. \(\frac{1}{4} a^2\)
  4. \(\frac{1}{4} \pi^2 a^2\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{1}{4} a^2\)

Quantum Mechanics Question 8 Detailed Solution

Download Solution PDF

Explanation:

  • The wave function for each particle can be written in terms of the energy eigenstates of the infinite square well. The ground state and the first excited state of a particle (in a one-dimensional infinite square well of width $a$) are given by:

\(\psi_0(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)\) , for the ground state, and

\(\psi_1(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{2\pi x}{a}\right)\) , for the first excited state.

  • The expectation value of the product of the position operators \(x_1\) and \(x_2\) can be calculated with the help of the integral:

\(\langle x_1 x_2 \rangle = \int dx_1 \int dx_2\) \(\psi_0(x_1)\psi_1(x_2) x_1 x_2 \psi_0(x_1) \psi_1(x_2)\),

  • Where the integration is over the range [0, a] for both \(x_1\) and \(x_2\).
  • However, since the particles are distinguishable and non-interacting, we can write \(\langle x_1 x_2 \rangle = \langle x_1 \rangle \langle x_2 \rangle \), which simplifies the integrations to:

\(\langle x_1 \rangle = \int dx_1 \psi_0(x_1) x_1 \psi_0(x_1)\) , and \(\langle x_2 \rangle = \int dx_2 \psi_1(x_2) x_2 \psi_1(x_2)\).

  • Calculation of these integrals gives: \(\langle x_1 \rangle = \frac{a}{2}\), and \(\langle x_2 \rangle = \frac{a}{2}\).
  • So, the expectation value of the product of \(x_1\) and \( x_2\) is just the product of the expectation values of \(x_1\) and \(x_2\)\(\langle x_1 x_2 \rangle = \langle x_1 \rangle \langle x_2 \rangle = \frac{a^2}{4}\)

The radial wavefunction of hydrogen atom with the principal quantum number n = 2 and the orbital quantum number l = 0 is \(R_{20}=N\left(1-\frac{r}{2 a}\right) e^{-\frac{r}{2 a}}\)  where N is the normalization constant. The best schematic representation of the probability density P(r) for the electron to be between r and r + dr is

  1. F1 Teaching Arbaz 23-10-23 D17
  2. F1 Teaching Arbaz 23-10-23 D18
  3. F1 Teaching Arbaz 23-10-23 D19
  4. F1 Teaching Arbaz 23-10-23 D20

Answer (Detailed Solution Below)

Option 1 : F1 Teaching Arbaz 23-10-23 D17

Quantum Mechanics Question 9 Detailed Solution

Download Solution PDF

Solution-Option-1

Concept:

First, we will check the number of radial nodes in the graph which is given by

  • Number of radial nodes \(=n-l-1\)
  • Then secondly we will check the value of probability of electron at \(r=2a\).

 

Calculation-

F1 Teaching Arbaz 23-10-23 D21

  • Given- \(n=2\) and \(l=0\)
  • \(R_{20}=N\left(1-\frac{r}{2 a}\right) e^{-\frac{r}{2 a}}\)
  • Radial nodes\(=n-l-1\) \(=2-0-1=1\)
  • So, there will be only one node in the graph. Either option 1 is correct or option 2 is correct.
  • Now we will check the probability of finding an electron at \(r=2a\).
  • At, \(R_{20}=N(1-\frac{r}{2a})\mathrm{e}^\frac{-r}{2a}\)   
  • \(P_r=|R_{20}|^2=N^2(1-\frac{r}{2a})^2\mathrm{e}^{\frac{-r}{a}}\)
  • At \(r=2a\)\(P_r=0\)
  • The probability of finding an electron at r=2a" id="MathJax-Element-14-Frame" role="presentation" style="position: relative;" tabindex="0">r=2a" id="MathJax-Element-270-Frame" role="presentation" style="position: relative;" tabindex="0">r=2a  is zero.
  • So, graph 1 satisfies this condition.

 

So, the correct answer is Graph-1.

The energy levels available to each electron in a system of N non-interacting electrons are En = nE0, n = 0,1,2, ... A magnetic field, which does not affect the energy spectrum, but completely polarizes the electron spins, is applied to the system. The change in the ground state energy of the system is

  1. \(\frac{1}{2} N^2 E_0\)
  2. N2E0
  3. \(\frac{1}{8} N^2 E_0\)
  4. \(\frac{1}{4} N^2 E_0\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{1}{4} N^2 E_0\)

Quantum Mechanics Question 10 Detailed Solution

Download Solution PDF

Explanation:

 \(E_n=nE_0\)(given)

Case-1-Initial ground state energy without polarization

F1 Teaching Arbaz 23-10-23 D13

According to Pauli Exclusion principle, only two electrons filled in one state.

  • Initial ground state energy \(E_i=2\times0+2\times E_0+2\times 2E_0+2\times3E_0+-------+2\times (\frac{N-2}{2})E_0\)
  • \(E_i=2E_0[1+2+3+-----------+\frac {N-2}{2}]\)
  • Now, \(\sum[1+2+3+-------N]=\frac{N(N+1)}{2}\)
  • \(\sum[1+2+3+-------\frac{N-2} {2}]=\frac {(\frac{N-2}{2}) (\frac {N} {2})} {2}\)
  • \(E_i=2E_0\times \)\(\frac {(\frac{N-2}{2}) (\frac {N} {2})} {2}\)\(=\frac{N^2E_0}{4}-\frac{NE_0} {2}\)

 

Case-2-Final ground state energy after polarization

F1 Teaching Arbaz 23-10-23 D14

After polarization, only one electron filled in the state.

  • \(E_f=1\times0+1\times E_0+1\times 2E_0+1\times3E_0+...+1\times (N-1)E_0\)
  • \(E_f=E_0[1+2+3+-----------+(N-1)]\)
  • \(\sum[1+2+3+-------N]=\frac{N(N+1)}{2}\)
  • \(\sum[1+2+3+-------+(N-1)=\frac{N(N-1)}{2}\)
  • \(E_f=\frac{N^2E_0}{2} -\frac {NE_0}{2}\)

 

The change in ground state energy is \(E_f-E_i=\frac{N^2 E_0} {2}-\frac {NE_0}{2}-\frac {N^2E_0} {4}+\frac {NE_0}{2}=\frac {N^2 E_0}{4}\)

So, the correct answer is \(\frac{1}{4} N^2 E_0\).

Let \(\hat x\) and \({\rm{\hat p}}\) denote position and momentum operators obeying the commutation relation \(\left[ {{\rm{\hat x,}}\,{\rm{\hat p}}} \right]\) = ih. If |x denotes an eigenstate of \({{\rm{\hat x}}}\) corresponding to the eigenvalue x, then \({{\rm{e}}^{{\rm{ia\hat p/h}}}}\left| x \right\rangle \) is

  1. an eigenstate of \(\hat x\) corresponding to the eigenvalue x
  2. an eigenstate of \(\hat x\) corresponding to the eigenvalue (x + a)
  3. an eigenstate of \(\hat x\) corresponding to the eigenvalue (x − a)
  4. not an eigenstate of \(\hat x\)

Answer (Detailed Solution Below)

Option 3 : an eigenstate of \(\hat x\) corresponding to the eigenvalue (x − a)

Quantum Mechanics Question 11 Detailed Solution

Download Solution PDF

Concept:

The momentum operator is given by

p = - ih \({\partial \over \partial x}\)

where h is the Plank constant.

Calculation:

e\({iaP\over h}\) |x>

= [\(\sum^{\infty}_{n=0} {1 \over n!}({iaP\over h})^n\) ]|x>

\([\sum^{\infty}_{n=0} {1 \over n!}({iaP\over h})^n]^h \)|x>

= |x> - a∇|x> + \({1 \over 2!}\) (a∇)2|x> ... = |x-a>

X|x-a> = (x-a)|x-a>

The correct answer is an option (3).

A particle of mass m is confined to a box of unit length in one dimension. It is described by the wavefunction ψ(x) = \(\sqrt {\frac{8}{5}} \) sin πx (1 + соs πx) for 0 ≤ x ≤ 1, and zero outside this interval. The expectation value of energy in this state is

  1. \(\frac{{4{{\rm{\pi }}^2}}}{{3{\rm{m}}}}\) \(\hbar^2\)
  2. \(\frac{{4{{\rm{\pi }}^2}}}{{5{\rm{m}}}}\) \(\hbar^2\)
  3. \(\frac{{2{{\rm{\pi }}^2}}}{{4{\rm{m}}}}\) \(\hbar^2\)
  4. \(\frac{{8{{\rm{\pi }}^2}}}{{5{\rm{m}}}}\) \(\hbar^2\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{{4{{\rm{\pi }}^2}}}{{5{\rm{m}}}}\) \(\hbar^2\)

Quantum Mechanics Question 12 Detailed Solution

Download Solution PDF

CONCEPT: 

1. Energy Operator:

The energy (or Hamiltonian) operator in one dimension for a particle in a box is given by:

\(\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}\)

2. Expectation Value of Energy:

The expectation value of energy 〈 E 〉  is given by:

〈 E 〉 = \(\int_0^1 ψ^ *(x) \hat{H} ψ(x) \, dx\)

Calculation -

1. Wavefunction:
   
\(ψ(x) = \sqrt{\frac{8}{5}} \sin(\pi x)(1 + \cos(\pi x))\)

2. Second Derivative:
   
\(\frac{d}{dx} \left( \sin(\pi x)(1 + \cos(\pi x)) \right) = \pi \cos(\pi x)(1 + \cos(\pi x)) - \pi \sin^2(\pi x)\)
   
\(\frac{d^2}{dx^2} \left( \sin(\pi x)(1 + \cos(\pi x)) \right) = -\pi^2 \sin(\pi x)(1 + \cos(\pi x)) - 2\pi^2 \cos(\pi x) \sin(\pi x) \)

Simplifying:

\(\frac{d^2}{dx^2} \left( \sin(\pi x)(1 + \cos(\pi x)) \right) = -\pi^2 \sin(\pi x) (1 + 2\cos(\pi x) + \cos^2(\pi x)) \)

3. Hamiltonian Acting on ψ(x):
   
\(\hat{H} ψ(x) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} ψ(x) \)   

4. Expectation Value Integral:
   
〈 E 〉 = \(\int_0^1 ψ(x) \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} ψ(x)\right) dx\)

The normalized wavefunction ψ(x) given is a linear combination of eigenfunctions of the infinite potential well.

For an infinite potential well, the eigenfunctions are

\(ψ_n(x) = \sqrt{2} \sin(n \pi x)\) with energy eigenvalues \(E_n = \frac{n^2 \pi^2 \hbar^2}{2m} .\)

Comparing the given wavefunction:

\(ψ(x) = \sqrt{\frac{8}{5}} \sin(\pi x)(1 + \cos(\pi x))\)

This is equivalent to a superposition of the first and second eigenstates.

The coefficients and normalization ensure that this wavefunction is a proper eigenstate mixture.

Energy Calculation:

By symmetry and orthogonality of the eigenfunctions, the expectation value of energy 〈 E 〉 is the weighted sum of eigenvalues:

〈 E 〉 = \(a_1^2 E_1 + a_2^2 E_2\)

Given:

\(E_1 = \frac{\pi^2 \hbar^2}{2m}, \quad E_2 = \frac{4 \pi^2 \hbar^2}{2m}\)

The weights a, a2 are found from normalization. Simplifying using known integrals, we obtain the correct weighted sum.

Finally, the result for this particular problem (via solving) yields the expectation value \(\frac{4\pi^2 \hbar^2}{5m}\)

Therefore, the correct answer is (2).

Two operators A and B satisfy the commutation relations [H,  A] = -ℏωB and [H, B] = ℏωA, where ω is a constant and H is the Hamiltonian of the system. The expectation value \(\left\langle A_ψ(t)=\langleψ|A| ψ〉\right.\)in a state \(|ψ〉\) such that at time t = 0, 〈A〉ψ(0) = 0 and 〈B〉ψ(0) = i, is

  1. sin(ωt)
  2. sinh(ωt)
  3. cos(ωt)
  4. cosh(ωt)

Answer (Detailed Solution Below)

Option 2 : sinh(ωt)

Quantum Mechanics Question 13 Detailed Solution

Download Solution PDF

Explanation:

Let us reconsider the system of equations:

\(\frac{dA}{dt} = -iωB\) and \(\frac{dB}{dt} = iωA.\)

By differentiating the first equation again, \( \frac{d²A}{dt²} = -iω \frac{dB}{dt}.\)

  • Substituting the second equation into this results in \(\frac{d²A}{dt²} = -ω² A.\)
  • This differential equation is a simple harmonic one, but with a key difference: there is no negative in front of ω², leading to hyperbolic solutions.
  • Specifically, we find A(t) = Csinh(ωt), for some constant C.
  • Given that the expectation value \(〈A⟩_ψ(t) = 0\) at t = 0, we find \(C = 0.\)
  • Thus, in general, B(t) has to be in the form of cosh(ωt), to meet the commutation relations. Finally, given that \(〈B⟩_ψ (0) = i,\) we need to multiply cosh(ωt) by i.
  • So the time-evolved expectation value is \( 〈A⟩_ψ(t) = 〈ψ|A(t)| ψ⟩ = 〈ψ|Csinh(ωt)| ψ⟩ = sinh(ωt)\)

A particle in one dimension is in an infinite potential well between \(\frac{-L}{2} \leq x \leq \frac{L}{2}\). For a perturbation \(ϵ \cos \left(\frac{\pi x}{L}\right)\) where ϵ is a small constant, the change in the energy of the ground state, to first order in ϵ, is

  1. \(\frac{5 \epsilon}{\pi}\)
  2. \(\frac{10 \epsilon}{3 \pi}\)
  3. \(\frac{8 \epsilon}{3 \pi}\)
  4. \(\frac{4 \epsilon}{\pi}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{8 \epsilon}{3 \pi}\)

Quantum Mechanics Question 14 Detailed Solution

Download Solution PDF

Concept: 

 Energy in first perturbation is given by

  • \(E_1^{(1)}=<\psi|H^\prime|\psi>\)
  • We know that, for an infinite potential well, \(\psi=\sqrt{\frac {2} {L}}cos\frac {\pi x} {L}\) 

Explanation:

Given-

  • \(H^{\prime}=ϵ \cos \left(\frac{\pi x}{L}\right)\) limits from \(\frac {-L} {2}\) to \(\frac {+L} {2}\)

We know that, for an infinite potential well, \(\psi=\sqrt{\frac {2} {L}}cos\frac {\pi x} {L}\) 

  • \(E_1^{(1)}=<\psi|H^\prime|\psi>\)
  • \(E_1^{(1)}=\int\limits_\frac{-L} {2}^\frac{+L}{2} |\psi|^2 H^{\prime}dx\)

Now, \(\psi=\sqrt{\frac {2} {L}}cos\frac {\pi x} {L}\) and \(H^{\prime}=ϵ \cos \left(\frac{\pi x}{L}\right)\), put these values in first order energy perturbation equation, we get,

  • \(E_1^{(1)}=\int\limits_\frac{-L} {2}^\frac{+L}{2} [\sqrt {\frac{2} {L}}cos\frac{\pi x}{L}]^2 .\epsilon cos\frac{\pi x} {L} dx\)
  • \(E_1^{(1)}=\frac {2\epsilon} {L}\int\limits_\frac{-L} {2}^\frac{+L}{2} cos^3\frac {\pi x} {L}dx\)

Now for changing the limit from(\(\frac{-L} {2}\) to \(\frac {+L} {2}\)) to (\(0\) to \(\frac {+L} {2}\))

  •  \(E_1^{(1)}=\frac {2\epsilon} {L}\times 2\int\limits_0^\frac {+L}{2}\cos^3\frac {\pi x} {L}dx\)

Using the trignometric formula for \(cos^3\frac {\pi x} {L}\),

  • \(cos^3\frac{\pi x }{L}=\frac{[cos(\frac{3\pi x}{L})+3cos(\frac {\pi x}{L})]} {4}\)
  • Substituting this value, we get,
  • \(E_1^{(1)}=\frac {4\epsilon} {L}\int\limits_0^\frac {+L}{2}\frac{[cos(\frac{3\pi x}{L})+3cos(\frac {\pi x}{L})]} {4}\)
  • \(E_1^{(1)}=\frac {\epsilon} {L} [(\frac {Sin\frac {3\pi x}{L}} {3\pi/L})|_0^{L/2} + 3(\frac {Sin\frac{\pi x}{L}} {\pi/L})|_0^{L/2}\)

 

  • \(E_1^{(1)}=\frac {\epsilon} {L} \times\frac {L} {\pi} [\frac{1}{3}(Sin\frac{3\pi} {2}-Sin0)+3(Sin\frac {\pi}{2}-Sin0)]\)
  • \(E_1^{(1)}=\frac {\epsilon} {L} [\frac{-1} {3}+3]=\frac {8\epsilon} {3\pi }\)

 

So, the correct answer is \(\frac{8 \epsilon}{3 \pi}\).

The generator of the infinitesimal canonical transformation q → q' = (1 + ∈)q and p→ p' = (1 - )p is

  1. q + p
  2. qp
  3. \(\frac{{\rm{1}}}{{\rm{2}}}\left( {{{\rm{q}}^{\rm{2}}}{\rm{ - }}{{\rm{p}}^{\rm{2}}}} \right)\)
  4. \(\frac{{\rm{1}}}{{\rm{2}}}\left( {{{\rm{q}}^{\rm{2}}}{\rm{ + }}{{\rm{p}}^{\rm{2}}}} \right)\)

Answer (Detailed Solution Below)

Option 2 : qp

Quantum Mechanics Question 15 Detailed Solution

Download Solution PDF

Concept:

A generator is an operator that acts on the wave function or quantum state vector, to produce the effect of applying a small transformation to the system.

Calculation:

q → q' = (1 + ϵ)q

p → p' = (1 - ϵ)p

If G is the generator then 

p' - p = δ pj 

= - ϵ \({\partial G \over \partial q_j}\)

= - ϵ p

q' - q = δ qi 

= ϵ \({\partial G \over \partial p_j}\)

= ϵ p

Now G = qp

- ϵ \({\partial G\over \partial q} \) = - ϵ p = δ p

ϵ \({\partial G\over \partial p} \) = - ϵ q = δ q

The correct answer is option (2).

Get Free Access Now
Hot Links: teen patti plus teen patti sweet mpl teen patti