बेईमान सौदे MCQ Quiz in हिन्दी - Objective Question with Answer for Dishonest Dealings - मुफ्त [PDF] डाउनलोड करें

Last updated on Jun 3, 2025

पाईये बेईमान सौदे उत्तर और विस्तृत समाधान के साथ MCQ प्रश्न। इन्हें मुफ्त में डाउनलोड करें बेईमान सौदे MCQ क्विज़ Pdf और अपनी आगामी परीक्षाओं जैसे बैंकिंग, SSC, रेलवे, UPSC, State PSC की तैयारी करें।

Latest Dishonest Dealings MCQ Objective Questions

बेईमान सौदे Question 1:

एक व्यापारी अपने माल को क्रय मूल्य पर 22% हानि पर बेचता है, लेकिन 44% कम वजन का प्रयोग करता है। उसका प्रतिशत लाभ या हानि क्या है?

  1. \(39\frac{5}{7}\%\)
  2. \(39\frac{2}{7}\%\)
  3. \(39\frac{4}{7}\%\)
  4. \(39\frac{3}{7}\%\)

Answer (Detailed Solution Below)

Option 2 : \(39\frac{2}{7}\%\)

Dishonest Dealings Question 1 Detailed Solution

दिया गया है:

क्रय मूल्य पर बताई गई हानि = 22%

कम वजन का प्रयोग = 44%

प्रयुक्त सूत्र:

वास्तव में बेचा गया माल = दावा किया गया माल - (कम वजन का प्रतिशत × दावा किया गया माल)

विक्रय मूल्य (SP) = क्रय मूल्य (CP) × (1 - हानि प्रतिशत/100)

प्रतिशत लाभ = \(\frac{\text{Actual SP - Actual CP}}{\text{Actual CP}}\) × 100

गणनाएँ:

मान लीजिए कि व्यापारी का 100 इकाई वजन के माल का क्रय मूल्य ₹100 है।

⇒ 1 इकाई वजन के लिए वास्तविक क्रय मूल्य (CP) = ₹1

व्यापारी क्रय मूल्य पर 22% हानि पर बेचने का दावा करता है। इसका अर्थ है कि जिस माल को वह ₹100 में बेचने का दावा करता है (जिसकी कीमत उसे ₹100 पड़ी है), वह उसे इस मूल्य पर बेचता है:

SP = CP - 22% of CP

SP = 100 - \(\frac{22}{100}\) × 100

SP = 100 - 22 = ₹78

इसलिए, व्यापारी को उस माल की मात्रा के लिए ₹78 प्राप्त होते हैं जिसके बेचने का वह दावा करता है (जैसे, यदि हम इसे वजन के धन समकक्ष के रूप में मानते हैं तो 100 इकाई के लिए)।

व्यापारी 44% कम वजन का प्रयोग करता है। इसका मतलब है कि यदि वह 100 इकाई वजन बेचने का दावा करता है, तो वह वास्तव में देता है:

वास्तव में दिया गया वजन = 100 - 100 का 44% 

वास्तव में दिया गया वजन = 100 - 44 = 56 इकाई वजन

चूँकि 1 इकाई वजन का क्रय मूल्य ₹1 है, इसलिए दिए गए 56 इकाई वजन की वास्तविक लागत है:

वास्तविक CP = 56 इकाई × ₹1/इकाई = ₹56

व्यापारी ने प्रभावी रूप से 56 इकाई माल (वास्तविक CP = ₹56) ₹78 (प्रभावी SP) में बेचा।

चूँकि प्रभावी SP (₹78) > वास्तविक CP (₹56), यह लाभ है।

लाभ = प्रभावी SP - वास्तविक CP

लाभ = 78 - 56 = ₹22

प्रतिशत लाभ = \(\frac{\text{Profit}}{\text{Actual CP}}\) × 100

प्रतिशत लाभ = \(\frac{22}{56}\) × 100

प्रतिशत लाभ = \(\frac{11}{28}\) × 100

प्रतिशत लाभ = \(\frac{275}{7}\) = \(39\frac{2}{7}\%\)

∴ व्यापारी लगभग \(39\frac{2}{7}\%\) का लाभ कमाता है। 

बेईमान सौदे Question 2:

एक बेईमान दुकानदार अपने सामान को क्रय मूल्य पर बेचने का वादा करता है। हालाँकि, वह एक ऐसे वजन का उपयोग करता है जिसका वजन, वास्तविक वजन से 21% कम है। उसका लाभ प्रतिशत ज्ञात कीजिए।

  1. \(27 \frac{47}{79} \%\)
  2. \(25 \frac{46}{79} \%\)
  3. \(28 \frac{92}{79} \%\)
  4. \(26 \frac{46}{79} \%\)

Answer (Detailed Solution Below)

Option 4 : \(26 \frac{46}{79} \%\)

Dishonest Dealings Question 2 Detailed Solution

दिया गया है:

दुकानदार एक ऐसे वजन का उपयोग करता है जिसका वजन, वास्तविक वजन से 21% कम है।

वह सामान क्रय मूल्य (CP) पर बेचता है।

प्रयुक्त सूत्र:

लाभ प्रतिशत = (लाभ / क्रय मूल्य) × 100

गणना:

मान लीजिए कि वास्तविक वजन 100 इकाई है।

⇒ दुकानदार द्वारा प्रयुक्त वजन = 100 - 21 = 79 इकाई

मान लीजिए कि 1 इकाई माल का क्रय मूल्य (CP) = ₹1

79 इकाइयों का कुल क्रय मूल्य = 79 × 1 = ₹79

79 इकाइयों का विक्रय मूल्य (SP) = 100 इकाइयों का विक्रय मूल्य (क्योंकि वह क्रय मूल्य पर बेचने का वादा करता है)।

⇒ SP = ₹100

लाभ = SP - CP

⇒ लाभ = 100 - 79 = ₹21

लाभ प्रतिशत = (लाभ / CP) × 100

⇒ लाभ प्रतिशत = (21 / 79) × 100

⇒ लाभ प्रतिशत = 26 (46/79)%

इसलिए, दुकानदार का लाभ प्रतिशत 26 (46/79)% है।

बेईमान सौदे Question 3:

एक बेईमान दुकानदार अपने माल को क्रय मूल्य पर बेचने का वादा करता है। हालाँकि, वह एक ऐसे वजन का उपयोग करता है जिसका वास्तविक वजन लिखे गए वजन से 26% कम है। उसका लाभ प्रतिशत ज्ञात कीजिए।

  1. \(34 \frac{5}{37}\%\)
  2. \(36 \frac{6}{37}\%\)
  3. \(37 \frac{10}{37}\%\)
  4. \(35 \frac{5}{37}\%\)

Answer (Detailed Solution Below)

Option 4 : \(35 \frac{5}{37}\%\)

Dishonest Dealings Question 3 Detailed Solution

दिया गया है:

एक बेईमान दुकानदार अपने माल को क्रय मूल्य पर बेचने का वादा करता है। हालाँकि, वह एक ऐसे वजन का उपयोग करता है जिसका वास्तविक वजन लिखे गए वजन से 26% कम है।

प्रयुक्त सूत्र:

लाभ प्रतिशत = \(\left(\dfrac{Selling\ Price\ -\ Cost\ Price}{Cost\ Price}\right) \times 100\)

गणना:

मान लीजिए कि 1 किलो का क्रय मूल्य (CP) ₹100 है।

चूँकि दुकानदार 26% कम वजन का उपयोग करता है, इसलिए उपयोग किया गया वजन 1 किलो का 74% है।

⇒ वास्तविक उपयोग किया गया वजन = 0.74 किलो

0.74 किलो का विक्रय मूल्य (SP) = ₹100 (क्योंकि वह 1 किलो के लिए क्रय मूल्य पर बेचने का दावा करता है)

लाभ = 0.74 किलो के लिए SP - CP

0.74 किलो के लिए CP = 0.74 × 100 = ₹74

लाभ = 100 - 74 = ₹26

लाभ प्रतिशत = \(\dfrac{लाभ}{CP} \times 100\)

⇒ लाभ प्रतिशत = \(\dfrac{26}{74} \times 100\)

⇒ लाभ प्रतिशत = \(\dfrac{2600}{74}\) = \(35 \frac{5}{37}\%\)

∴ सही उत्तर विकल्प (4) है।

बेईमान सौदे Question 4:

एक बेईमान दुकानदार अपने सामान को क्रय मूल्य पर बेचने का वादा करता है। हालाँकि, वह एक ऐसे वजन का उपयोग करता है जिसका वास्तविक वजन उस पर लिखे वजन से 46% कम है। उसका लाभ प्रतिशत ज्ञात कीजिए।

  1. \(86 \frac{6}{27} \%\)
  2. \(84 \frac{5}{27} \%\)
  3. \(85 \frac{5}{27} \%\)
  4. \(87 \frac{10}{27} \%\)

Answer (Detailed Solution Below)

Option 3 : \(85 \frac{5}{27} \%\)

Dishonest Dealings Question 4 Detailed Solution

दिया गया है:

एक बेईमान दुकानदार अपने सामान को क्रय मूल्य पर बेचने का वादा करता है। हालाँकि, वह एक ऐसे वजन का उपयोग करता है जिसका वास्तविक वजन उस पर लिखे वजन से 46% कम है।

प्रयुक्त सूत्र:

लाभ प्रतिशत = ((विक्रय मूल्य - क्रय मूल्य) / क्रय मूल्य) × 100

गणना:

मान लीजिए कि 1 किलो माल का क्रय मूल्य ₹100 है।

वास्तविक दिया गया वजन = 1 किलो - 1 किलो का 46%

⇒ वास्तविक दिया गया वजन = 1 किलो - 0.46 किलो

⇒ वास्तविक दिया गया वजन = 0.54 किलो

0.54 किलो माल का विक्रय मूल्य = ₹100 (चूँकि वह क्रय मूल्य पर बेचने का दावा करता है)

0.54 किलो माल का क्रय मूल्य = 0.54 × 100

⇒ 0.54 किलो माल का क्रय मूल्य = ₹54

लाभ = विक्रय मूल्य - क्रय मूल्य

⇒ लाभ = ₹100 - ₹54

⇒ लाभ = ₹46

लाभ प्रतिशत = (लाभ / क्रय मूल्य) × 100

⇒ लाभ प्रतिशत = (₹46 / ₹54) × 100

⇒ लाभ प्रतिशत = \(85 \frac{5}{27} \%\)

∴ सही उत्तर विकल्प 3 है।

बेईमान सौदे Question 5:

एक दुकानदार अपने माल को लागत मूल्य पर बेचने का दावा करता है, लेकिन वह गलत बाट का उपयोग करता है जिससे वह खरीदते समय 10% और बेचते समय 15% की धोखाधड़ी करता है। उसका कुल लाभ या हानि प्रतिशत है:

  1. 5%
  2. 29.41%
  3. 22.72%
  4. 25%

Answer (Detailed Solution Below)

Option 2 : 29.41%

Dishonest Dealings Question 5 Detailed Solution

दिया गया:

दुकानदार ने खरीदते समय 10% की ठगी की ⇒ 1 किलो के बदले मिला 1.1 किलो

दुकानदार बेचते समय 15% की ठगी करता है ⇒ 1 किलो के स्थान पर केवल 0.85 किलो देता है

प्रयुक्त सूत्र:

लाभ% = (विक्रय मूल्य - क्रय मूल्य) / क्रय मूल्य × 100

गणना:

माना 1.1 किग्रा का क्रय मूल्य = ₹100

⇒ 1 किग्रा का क्रय मूल्य = 100 ÷ 1.1 = 90.91

वह 0.85 किलोग्राम ₹100 में बेचता है

⇒ 1 किग्रा का विक्रय मूल्य = 100 ÷ 0.85 = 117.65

⇒ लाभ = 117.65 - 90.91 = 26.74

⇒ लाभ% = 26.74 ÷ 90.91 × 100 = 29.41%

∴ सही उत्तर 29.41% है

Top Dishonest Dealings MCQ Objective Questions

एक दुकानदार सामान्यतः एक निश्चित लेनदेन में 20% का लाभ अर्जित करता है; तौल मशीन में हुई खराबी के कारण वह 1 किग्रा के स्थान पर 900 ग्राम वजन करता है। यदि वह सामान्य मूल्य से 10% कम मूल्य लेता है, तो उसका वास्तविक लाभ या हानि प्रतिशत क्या है?

  1. 20%
  2. 28%
  3. 25%
  4. 80%

Answer (Detailed Solution Below)

Option 1 : 20%

Dishonest Dealings Question 6 Detailed Solution

Download Solution PDF

दिया है:

एक दुकानदार सामान्यत: एक निश्चित लेनदेन में 20% का लाभ कमाता है,

तौल मशीन में समस्या के कारण वह 1 किग्रा के स्थान पर 900 ग्राम वजन दिखाता है।

वह सामान्य शुल्क से 10% कम शुल्क लेता है।

प्रयुक्त सूत्र:

SP = \(\frac{100 - discount}{100}×CP\)

गणना:

माना 1 किग्रा सामान का क्रय मूल्य = 100 रुपये

इसलिए, 1 किग्रा सामान का विक्रय मूल्य = 100 × 120/100 = 120 रुपये

900 ग्राम वस्तु का क्रय मूल्य = 90 रुपये

प्रश्न के अनुसार,

दुकानदार सामान्य रूप से जो शुल्क लेता है उससे 10% कम शुल्क लेता है

इसलिए, नया विक्रय मूल्य = पुराना विक्रय मूल्य × (100 - 10)/100

⇒ नया विक्रय मूल्य = 120 × \(\frac{90}{100}\)108 रुपये

तो, लाभ = (108 - 90) रुपये18 रुपये

तो, लाभ% = (\(\frac{18}{90}\)) × 100 = 20%

इसलिए, लाभ प्रतिशत 20% है।

एक बेईमान व्यापारी क्रय मूल्य पर 12.5% हानि पर सामान बेचता है, लेकिन 36 ग्राम के बजाय 28 ग्राम वजन का उपयोग करता है। उसका लाभ या हानि प्रतिशत क्या है?

  1. 6.25% हानि
  2. 12.5% लाभ
  3. 18.75% लाभ
  4. 10.5% हानि

Answer (Detailed Solution Below)

Option 2 : 12.5% लाभ

Dishonest Dealings Question 7 Detailed Solution

Download Solution PDF

दिया गया है:

एक बेईमान व्यापारी क्रय मूल्य पर 12.5% हानि पर सामान बेचता है लेकिन 36 ग्राम के बजाय 28 ग्राम वजन का उपयोग करता है।

प्रयुक्त अवधारणा:

A% और B% की लगातार दो वृद्धि के बाद अंतिम प्रतिशत परिवर्तन = (A + B + \(AB \over 100\)) %

गणना:

36 ग्राम के स्थान पर 28 ग्राम भार का प्रयोग करने पर प्रतिशत लाभ = \(\frac {36 - 28}{28} \times 100\) = \(\frac {200}{7}\%\)

प्रतिशत हानि = 12.5%

12.5% हानि को -12.5% लाभ मानते हुए,

अब, अंतिम प्रतिशत लाभ/हानि = \({\frac {200}{7} - 12.5 - {\frac {200}{7} \times 12.5 \over 100}}\) = +12.5%

यहाँ, धनात्मक चिह्न प्रतिशत लाभ दर्शाता है।

∴ उसका लाभ प्रतिशत 12.5% है।

Shortcut Trick

गणना: 

व्यापारी 12.5% हानि पर माल बेचता है:

C.P : S.P = 8 : 7

व्यापारी 36 ग्राम के बजाय 28 ग्राम वजन का उपयोग करता है।

C.P : S.P = 28 : 36 = 7 : 9

हम क्रमिक विधि का उपयोग कर सकते हैं:

C.P. S.P.
8 7
7 9
56 63

इसलिए, CP : SP = 56 : 63 = 8 : 9

लाभ% = {(9 - 8)/8} × 100

⇒ 12.5%

∴ सही उत्तर 12.5% है।

एक बेईमान दुकानदार चीनी को 20 रुपये प्रति किलो की दर से बेचता है, जिसे उसने 15 रुपये प्रति किलो की दर से खरीदा था। साथ ही, वह 1000 ग्राम चीनी के स्थान पर 850 ग्राम चीनी देता है। उसका वास्तविक लाभ या हानि प्रतिशत ज्ञात कीजिए।

  1. 45.45% लाभ 
  2. 42.56% हानि 
  3. 50.12% हानि 
  4. 56.86% लाभ 

Answer (Detailed Solution Below)

Option 4 : 56.86% लाभ 

Dishonest Dealings Question 8 Detailed Solution

Download Solution PDF

दिया गया है:

चीनी का क्रय मूल्य = 15 रुपये प्रति किग्रा

चीनी का विक्रय मूल्य = 20 रुपये प्रति किग्रा 

1000 - 850 = 150 ग्राम ठगता है।

प्रयुक्त सूत्र: 

 लाभ % = (लाभ / क्रय मूल्य) × 100 

 लाभ (विक्रय मूल्य – क्रय मूल्य)

गणना:

1000 ग्राम चीनी का क्रय मूल्य = 15 रुपये 

1 ग्राम चीनी का क्रय मूल्य = 15/1000

वह ग्राहक को केवल 850 ग्राम चीनी देता है और 150 ग्राम ठगता है।

इसलिए, 850 ग्राम चीनी का क्रय मूल्य = (15 x 850 )/1000

850 ग्राम चीनी का क्रय मूल्य = 12.750 

चीनी का विक्रय मूल्य = 20 

 लाभ = 20 - 12.750 = 7.250

 लाभ % = (लाभ / क्रय मूल्य) × 100 

 लाभ % = (7.250 / 12.750) x 100

 लाभ % = 56.86 %

∴ दुकानदार द्वारा अर्जित लाभ 56.86% है। 

Shortcut Trick

  क्रय मूल्य    विक्रय मूल्य
रुपये  15    20
राशि   850  1000

क्रय मूल्य : विक्रय मूल्य = 15  ×  850 : 20 × 1000

क्रय मूल्य : विक्रय मूल्य = 51 : 80  P = (80 - 51 = 29)

लाभ % = (29/51) × 100 = 56.86%

 

R की वजन मशीन 400 ग्राम वजन दिखाती है, जबकि वास्तविक वजन 350 ग्राम है। बादाम का क्रय मूल्य 880 रुपये प्रति किग्रा है और 200 ग्राम के पैकेट खराब मशीन से बनाये जाते हैं। 25% का लाभ प्राप्त करने के लिए प्रत्येक पैकेट का विक्रय मूल्य (₹ में) क्या होना चाहिए?

  1. 197.50
  2. 175.50
  3. 182.50
  4. 192.50

Answer (Detailed Solution Below)

Option 4 : 192.50

Dishonest Dealings Question 9 Detailed Solution

Download Solution PDF

दिया गया है:

क्रय मूल्य = 880 रुपये प्रति किग्रा

R की वजन मशीन 400 ग्राम वजन दिखाती है, जबकि वास्तविक वजन 350 ग्राम है।

प्रयुक्त सूत्र:

विक्रय मूल्य = क्रय मूल्य × (1 + लाभ/100)

गणना:

प्रत्येक 400 ग्राम का वास्तविक वजन 350 ग्राम है, तो 200 ग्राम पैकेट के लिए वास्तविक वजन = 200 × 350/400 = 175 ग्राम

1000 ग्राम का क्रय मूल्य = 880

175 ग्राम का क्रय मूल्य = 880 × 175/1000 = 154

25% का लाभ प्राप्त करने के लिए प्रत्येक पैकेट का विक्रय मूल्य (रुपये में) = 154 × 125/100

= 154 × 5/4

= 192.50

सही उत्तर 192.50 है

चावल का क्रय मूल्य और विक्रय मूल्य समान है। दोषपूर्ण वजन मशीन के कारण, विक्रेता 15% का लाभ अर्जित करता है। यदि 1000 ग्राम चावल का क्रय मूल्य x रुपये है और मशीन बदल दी जाती है जो 950 ग्राम के बजाय 1000 ग्राम दिखाती है, तो लाभ का समान प्रतिशत प्राप्त करने के लिए अब विक्रय मूल्य (रुपये में) कितना होना चाहिए?

  1. 1.0295x
  2. 1.0259x
  3. 1.0925x
  4. 1.0950x

Answer (Detailed Solution Below)

Option 3 : 1.0925x

Dishonest Dealings Question 10 Detailed Solution

Download Solution PDF

प्रयुक्त अवधारणा

1 किग्रा = 1000 ग्राम

प्रयुक्त सूत्र:

लाभ = विक्रय मूल्य - क्रय मूल्य

लाभ% = (S.P - C.P)/C.P × 100(    )×100%" id="MathJax-Element-20-Frame" role="presentation" style="position: relative;" tabindex="0">(    )×100%" id="MathJax-Element-241-Frame" role="presentation" style="position: relative;" tabindex="0">(    )×100%" id="MathJax-Element-7-Frame" role="presentation" style="position: relative;" tabindex="0">(    )×100%" id="MathJax-Element-1-Frame" role="presentation" style="position: relative;" tabindex="0">(    )×100%" id="MathJax-Element-3-Frame" role="presentation" style="position: relative;" tabindex="0">(    )×100%

गणना: 

1000 ग्राम चावल का क्रय मूल्य x है।

950 ग्राम चावल का क्रय मूल्य = x/1000 × 950 = 95x/100 रुपये 

दोषपूर्ण वजन के बाद 15% का लाभ अर्जित करने के लिए, S.P होना चाहिए:

⇒ 95x/100 × 115/100

⇒ 10925x/10000

⇒ 1.0925x

सही उत्तर 1.0925x है। 

एक बेईमान दुकानदार 20 रुपये प्रति किलोग्राम की दर से खरीदे गए आम को 30 रुपये प्रति किलोग्राम की दर पर बेचता है और वह 1 किलोग्राम के स्थान पर  800 ग्राम देता है। दुकानदार का वास्तविक लाभ प्रतिशत है:

  1. 75%
  2. 37.5%
  3. 50%
  4. 87.5%

Answer (Detailed Solution Below)

Option 4 : 87.5%

Dishonest Dealings Question 11 Detailed Solution

Download Solution PDF

दिया गया है:

आम का क्रय मूल्य = 20 रुपये प्रति किलोग्राम

आम का विक्रय मूल्य = 30 रुपये प्रति किलोग्राम

उसके द्वारा की गई बेईमानी 1000 - 800 = 200 ग्राम

प्रयुक्त सूत्र:

लाभ % = (लाभ / क्रय मूल्य) × 100

लाभ = (विक्रय मूल्य – क्रय मूल्य)

गणना:

1000 ग्राम चीनी का क्रय मूल्य = 20 रुपये

1 ग्राम चीनी का क्रय मूल्य = 20/1000

वह केवल 800 ग्राम देता है और ग्राहक के साथ 200 ग्राम की बेईमानी करता है

इसलिए 800 ग्राम चीनी का क्रय मूल्य = (20 × 800)/1000

800 ग्राम चीनी का क्रय मूल्य = 16

चीनी का विक्रय मूल्य = 30

लाभ = 30 - 16 = 14

लाभ % = (लाभ / क्रय मूल्य) × 100

⇒ (14/16) × 100

⇒ 87.5 %

दुकानदार द्वारा अर्जित लाभ 87.5% है।

Shortcut Trick

  क्रय मूल्य विक्रय मूल्य
रुपये 20 30
राशि 800 1000


क्रय मूल्य : विक्रय मूल्य = 20 × 800 : 30 × 1000

क्रय मूल्य : विक्रय मूल्य = 16 : 30 ⇒ P = (30 - 16= 14)

लाभ % = (14/16) × 100 = 87.5%

एक दुकानदार फल खरीदने और बेचने में कम तौल का उपयोग करके 12% तक बेईमानी करता है, तो उसका कुल लाभ प्रतिशत है :

A. 25.25

B. 27.27

C. 25.75

D. 25.5   

  1. B
  2. A
  3. C
  4. D

Answer (Detailed Solution Below)

Option 1 : B

Dishonest Dealings Question 12 Detailed Solution

Download Solution PDF

दिया गया है:

खरीदते और बेचते समय बेईमानी का प्रतिशत = 12%

प्रयुक्त सूत्र:

लाभ% = [(S.P - C.P)/C.P × 100]

जहाँ S.P = विक्रय मूल्य, C.P = क्रय मूल्य

गणना:

दुकानदार ने बेईमानी करके 100 ग्राम की जगह 112 ग्राम का सामान खरीदा। 

और वह 100 ग्राम की जगह 88 ग्राम बेचता है। 

प्रश्न के अनुसार

SP/CP = (112 × 100)/(100 × 88)

⇒ 14/11

लाभ = SP - CP

⇒ 14 - 11 = 3

लाभ प्रतिशत = (3/11) × 100%

⇒ 27.27%

∴ दुकानदार को 27.27% लाभ हुआ।

 

खरीदते और बेचते समय दुकानदार भार में 12% की बेईमानी करता है। 

दुकानदार के लिए क्रय मूल्य = [100 × (100 - 12)]/100

⇒ 88

दुकानदार के लिए विक्रय मूल्य = [100 × (100 + 12)]/100

⇒ 112

लाभ % = [(S.P - C.P)/C.P] × 100% 

⇒ [(112 - 88)/88] × 100%

⇒ (24/88) × 100%

⇒ 27.27%

∴ दुकानदार को 27.27% लाभ हुआ।

एक दुकानदार अपनी वस्तुओं को 46 रुपये/किग्रा पर बेचने का दावा करता है जो उसे 50 रुपये/ किग्रा का पड़ता है। लेकिन बेचते समय वह गलत वजन का उपयोग करता है और 1 किलो के बदले केवल 800 ग्राम देता है। उसका लाभ प्रतिशत क्या है?

  1. 12%
  2. 20%
  3. 15%
  4. 10%

Answer (Detailed Solution Below)

Option 3 : 15%

Dishonest Dealings Question 13 Detailed Solution

Download Solution PDF

⇒ 800 ग्राम वस्तु का विक्रय मूल्य = 46 रुपये

∴ 1 किग्रा वस्तु का विक्रय मूल्य = 46 × (1000/800) = 57.5 रुपये

⇒ 1 किग्रा वस्तु का क्रय मूल्य = 50 रुपये

∴ लाभ प्रतिशत = [(57.5 – 50)/50] × 100% = 15%

एक दुकानदार का दावा है कि वह 27 रुपये/किग्रा की दर से चीनी बेच रहा है, जिसका मूल्य उसे 30 रुपये/किग्रा मिलता है, लेकिन वह 1000 ग्राम के बजाय 750 ग्राम देता है। उसका लाभ या हानि प्रतिशत कितना है?

  1. 10% हानि 
  2. 7.5% लाभ
  3. 2.5% हानि
  4. 20% लाभ

Answer (Detailed Solution Below)

Option 4 : 20% लाभ

Dishonest Dealings Question 14 Detailed Solution

Download Solution PDF

दिया है

जिस मूल्य पर वह चावल बेचता है = 30 रुपये/किग्रा

दुकानदार का दावा किया गया मूल्य = 27 रुपये/किग्रा

अंकित मात्रा = 1000 ग्राम

दी गई मात्रा = 750 ग्राम

प्रयुक्त सूत्र

लाभ %\(=\frac{S-C}{C}\times 100\)

गणना

दुकानदार का दावा है कि वह 27 रुपये/किग्रा = 27 रुपये के मूल्य पर 1000 ग्राम बेच रहा है

लेकिन मूल रूप से वह 30 रुपये/किग्रा = 22.5 रुपये के लिए 750 ग्राम का उपयोग करता है

उपरोक्त से, क्रय मूल्य = 22.5 रुपये

विक्रय मूल्य = 27 रुपये

लाभ% =\(\frac{S-C}{C}\times 100=\frac{27-22.5}{22.5}\times 100=20%\)%

दुकानदार को अर्जित कुल लाभ 20% है

Shortcut Trick

  क्रय मूल्य विक्रय मूल्य
दर 30 27
मिश्रधन 750 1000

क्रय मूल्य : विक्रय मूल्य = 30 × 750 : 27 × 1000 = 5 : 6

इसलिए लाभ = 6 - 5 = 1 P% = (1/5) × 100 = 20

एक दुकानदार एक किग्रा वजन के स्थान पर 940 ग्राम वजन का उपयोग करता है। वह इसे 4% लाभ पर बेचता है। वास्तविक लाभ प्रतिशत कितना होगा? (दो दशमलव स्थानों तक सन्निकटन कीजिए।)

  1. 9.25%
  2. 10.32%
  3. 10.64%
  4. 10.96%

Answer (Detailed Solution Below)

Option 3 : 10.64%

Dishonest Dealings Question 15 Detailed Solution

Download Solution PDF

दिया गया है:

एक बेईमान दुकानदार एक किग्रा वजन के स्थान पर 940 ग्राम वजन का उपयोग करता है। 

अर्जित लाभ = 4%

गणना:

माना, 1 ग्राम का क्रय मूल्य 1 रुपये है। 

दुकानदार के लिए,

⇒ क्रय मूल्य = 940 रुपये

⇒ विक्रय मूल्य = 1000 × (100 + 4)% = 1040 रुपये

⇒ बेईमान दुकानदार का वास्तविक लाभ = [(1040 - 940)/940] × 100

⇒ बेईमान दुकानदार का वास्तविक लाभ = (100/940) × 100

⇒ बेईमान दुकानदार का वास्तविक लाभ = 10.64%

∴ बेईमान दुकानदार का वास्तविक लाभ 10.64% है। 

Get Free Access Now
Hot Links: teen patti master purana teen patti rummy teen patti master apk best teen patti chart teen patti apk