Sum of an infinite GP MCQ Quiz in বাংলা - Objective Question with Answer for Sum of an infinite GP - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Apr 15, 2025

পাওয়া Sum of an infinite GP उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Sum of an infinite GP MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Sum of an infinite GP MCQ Objective Questions

Top Sum of an infinite GP MCQ Objective Questions

Sum of an infinite GP Question 1:

Find the sum of the series upto infinite term

\(\frac{1}{7}+\frac{2}{7^{2}}+\frac{1}{7^{3}}+\frac{2}{7^{4}}\) + ....

  1. \(\frac{1}{16}\)
  2. \(\frac{3}{16}\)
  3. -\(\frac{1}{7}\)
  4.  -\(\frac{3}{16}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{3}{16}\)

Sum of an infinite GP Question 1 Detailed Solution

Concept:

If a, ar, ar2, …. is an infinite GP, then the sum of infinite geometric series is given by.

Sum of infinite GP = a/1 - r ; |r| < 1

Calculation:

S = \(\frac{1}{7}+\frac{2}{7^{2}}+\frac{1}{7^{3}}+\frac{2}{7^{4}}\) + ....

= (\(\frac{1}{7}+\frac{1}{7^{3}}+\frac{1}{7^{5}}\)+.....) + (\(\frac{2}{7^{2}}+\frac{2}{7^{4}}+\frac{2}{7^{6}}+...\)

= S1 + S2 

S1 = (\(\frac{1}{7}+\frac{1}{7^{3}}+\frac{1}{7^{5}}\) +.....) 

In the first series a = 1/7  and r =  1/49

Now; S1  = a/1 - r =  7/48

S= (\(\frac{2}{7^{2}}+\frac{2}{7^{4}}+\frac{2}{7^{6}}+...\)

In the second series a = 2/49 and r = 1/49

Now, S2 = a/1 - r = 2/48

S = S1 + S2  = 9/48 = 3/16

Sum of an infinite GP Question 2:

If 1 + sin θ + sin2 θ + ... upto ∞ = 2√3 + 4, then θ = ______

  1. 3π/4
  2. π/3
  3. π/4
  4. π/6

Answer (Detailed Solution Below)

Option 2 : π/3

Sum of an infinite GP Question 2 Detailed Solution

Concept:

The sum of an infinite G.P. is 

S = \(\rm a\over 1-r\)

Where a is the first term of the series and r is the common ratio

Calculation:

Given 1 + sin θ + sin2 θ + ... upto ∞ = 2√3 + 4

First term of the G.P is a = 1 and r = sin θ 

∴ \(\rm 1\over 1 - \sin θ\) = 2√3 + 4

1 - sin θ = \(1\over2\sqrt3 + 4\)

1 - sin θ = \({1\over2\sqrt3 + 4} \times {2\sqrt3 - 4\over 2\sqrt3 - 4}\)

1 - sin θ = \( {4-2\sqrt3 \over 16-12}\)

1 - sin θ = \( 1-{\sqrt3 \over 2}\)

sin θ = \( {\sqrt3 \over 2}\) 

⇒ θ = \(\boldsymbol{\pi\over3}\)

Sum of an infinite GP Question 3:

If x = 1 + a + a2 + a3 + ...∞ (|a| < 1) and y = 1 + b + b2 + b3 + ...∞ (|b| < 1), then 1 + ab + a2b2 + a3b3 + ...∞ is equal to

  1. \(\frac{xy}{x \ + \ y \ - \ 1}\)
  2. \(\frac{x \ + \ y}{x \ + \ y \ + \ 1}\)
  3. \(\frac{x \ - \ y}{x \ - \ y \ + \ 1}\)
  4. None of these

Answer (Detailed Solution Below)

Option 1 : \(\frac{xy}{x \ + \ y \ - \ 1}\)

Sum of an infinite GP Question 3 Detailed Solution

Given :

x = 1 + a + a2 + a3 + ...∞ (|a| < 1)

y = 1 + b + b2 + b3 + ...∞ (|b| < 1)

Concept :

Sum of the infinite term of GP:

S = \(\frac{a}{1-r}\)     

Where a is first term and r is common ratio and |r| < 1

Calculations :

x = 1 + a + a2 + a3 + ...∞ (|a| < 1)

First-term = 1 and common ratio = a

By using the above concept

⇒ \(x=\frac{1}{1-a}\)

⇒ x - ax  = 1

⇒ \(a = \frac{x -1}{x}\)        ----- (1)

Similarly, we get

⇒ \(b = \frac{y-1}{y}\)        ----- (2)

Now, consider the series  1 + ab + a2b2 + a3b3 + ...∞

Using equation (1), we get

⇒ \(z= \frac{1}{1-ab}\)

Put the value of a and b from equations (1) and (2), we get

⇒ \(z= \frac{1}{1-\frac{x-1}{x}.\frac{y-1}{y}}\)

⇒ \(z = \frac{xy}{x+y-1}\)

∴ The required value is equal to \(\frac{xy}{x \ + \ y \ - \ 1}\).

Sum of an infinite GP Question 4:

The value of the infinite product \({6^{\frac{1}{2}}} \times {6^{\frac{1}{2}}} \times {6^{\frac{3}{8}}} \times {6^{\frac{1}{4}}} \times \ldots \) is

  1. 6
  2. 36
  3. 216

Answer (Detailed Solution Below)

Option 2 : 36

Sum of an infinite GP Question 4 Detailed Solution

Concept:

Let us consider sequence a1, a2, a3 …. an is an G.P.

  • Common ratio = r = \(\frac{{{{\rm{a}}_2}}}{{{{\rm{a}}_1}}} = \frac{{{{\rm{a}}_3}}}{{{{\rm{a}}_2}}} = \ldots = \frac{{{{\rm{a}}_{\rm{n}}}}}{{{{\rm{a}}_{{\rm{n}} - 1}}}}\)
  • nth  term of the G.P. is an = arn-1
  • Sum of n terms = s = \(\frac{{{\rm{a\;}}\left( {{{\rm{r}}^{\rm{n}}} - 1} \right)}}{{{\rm{r}} - {\rm{\;}}1}}\); where r >1
  • Sum of n terms = s = \(\frac{{{\rm{a\;}}\left( {1 - {\rm{\;}}{{\rm{r}}^{\rm{n}}}} \right)}}{{1 - {\rm{\;r}}}}\); where r <1
  • Sum of infinite GP = \({{\rm{s}}_\infty } = \frac{{\rm{a}}}{{1{\rm{\;}} - {\rm{\;r}}}}\); |r| < 1

 

Calculation:

\({\rm{Let\;S}} = {6^{\frac{1}{2}}} \times {6^{\frac{1}{2}}} \times {6^{\frac{3}{8}}} \times {6^{\frac{1}{4}}} \times \ldots \)

This can be written as:

\({\rm{S}} = {6^{\frac{1}{2}}} \times {6^{\frac{2}{4}}} \times {6^{\frac{3}{8}}} \times {6^{\frac{4}{{16}}}} \times \ldots \)

\(S = {6^{\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{{16}} + \ldots }}\)

Let \(x = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{{16}} + \ldots\)            ---(1)

Multiply by 1/2 on both sides, we get:

\(\Rightarrow \frac{x}{2} = \frac{1}{4} + \frac{2}{8} + \frac{3}{{16}} + \frac{4}{{32}} + \ldots \)            ---(2)

Subtract equation 2 from equation 1, we get

\(x - \frac{x}{2} = \left( {\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{{16}} + \ldots } \right) - \;\left( {\frac{1}{4} + \frac{2}{8} + \frac{3}{{16}} + \frac{4}{{32}} + \ldots } \right)\)

\(\Rightarrow \frac{x}{2} = \frac{1}{2} + \left( {\frac{2}{4} - \frac{1}{4}} \right) + \left( {\frac{3}{8} - \frac{2}{8}} \right) + \left( {\frac{4}{{16}} - \frac{3}{{16}}} \right) + \ldots \)

\(\Rightarrow \frac{x}{2} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + \frac{1}{{32}} + \ldots \)

The above series is clearly a Geometric Progression with the first term = 1/2 and common ratio = 1/2

\(\therefore \frac{x}{2} = \frac{{\frac{1}{2}}}{{\left( {1 - \frac{1}{2}} \right)}} = \frac{{\frac{1}{2}}}{{\frac{1}{2}}} = 1\)

⇒ x = 2 × 1 = 2

Put the value of x in the original sum:

∴ S = 62 = 36

Sum of an infinite GP Question 5:

If the second term of a GP is 2 and the sum of its infinite terms is 8, then the GP is

  1. \(8,{\rm{\;}}2,\frac{1}{2},\frac{1}{8},{\rm{\;}} \ldots \ldots ..\)
  2. \(10,{\rm{\;}}2,\frac{2}{5},\frac{2}{{{2^5}}},{\rm{\;}} \ldots \ldots .\)
  3. \(4,2,1,\frac{1}{2},\frac{1}{{{2^2}}}, \ldots \ldots .\)
  4. \(6,3,\frac{3}{2},\frac{3}{4}, \ldots ..\)

Answer (Detailed Solution Below)

Option 3 : \(4,2,1,\frac{1}{2},\frac{1}{{{2^2}}}, \ldots \ldots .\)

Sum of an infinite GP Question 5 Detailed Solution

Concept:

If a, ar, ar2, ….is terms an infinite GP, then the sum of infinite geometric series is given by.

Sum of infinite GP = \({s_\infty } = \;\frac{a}{{1\; - \;r}}\) ; |r| < 1

Calculation:

If a, ar, ar2, ….is terms an infinite GP.

Given: Second term of GP = 2

⇒ ar = 2      …. (1)

Sum of infinite GP = \({s_\infty } = \;\frac{a}{{1\; - \;r}} = 8\)

⇒ a = 8 × (1 – r)

Multiplying r both sides,

⇒ ar = 8r × (1- r)

From equation 1st

⇒ 2 = 8 (r – r2)

⇒ 1 = 4r – 4r2

⇒ 4r2 – 4r + 1 = 0

⇒ 4r2 – 2r – 2r + 1 = 0

⇒ 2r (2r – 1) – 1(2r – 1) = 0

⇒ (2r – 1) (2r – 1) = 0

⇒ 2r – 1 =0

So, r = ½

Put in equation 1st

a × ½ = 2

So, a = 4

Then the GP is a, ar ,ar2…….

So 4,2,1…..are in GP

Sum of an infinite GP Question 6:

The terms of a G.P. are all positive and each term of it is equal to the sum of the next two following terms. Find its common ratio.

  1. \(\frac{1}{\sqrt{5}}\)
  2. \(\frac{\sqrt{5}+1}{2}\)
  3. \(\frac{1}{1+\sqrt{5}}\)
  4. \(\frac{\sqrt{5}−1}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{\sqrt{5}−1}{2}\)

Sum of an infinite GP Question 6 Detailed Solution

Concept Used:

a, ar, ar2, ar3, . . ., arn-1 is a G.P. where a is the first term and r is the common ratio.

and for any quadratic ax2 + bx + c = 0, 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Calculation:

Given: tn = tn+1 + tn+2

⇒ arn-1 =  arn + arn+1

⇒ arn-1 = arn-1( r+ r2)

⇒ 1 = r+ r2

⇒ r2 + r -1 = 0

⇒ \(r = \frac{-1± \sqrt{1^2- 4(-1)(1)}}{2}\)

⇒ \(r = \frac{-1± \sqrt{1+ 4}}{2}\)

⇒ \(r = \frac{-1± \sqrt{5}}{2}\)

Hence, option (4) is the the correct answer.

Sum of an infinite GP Question 7:

A square is drawn by joining mid-points of the sides of a square. Another square is drawn inside the second square in the same way and the process is continued indefinitely. If the side of the first square is 16 cm, then what is the sum of the areas of all the squares?

  1. 256 sq. cm
  2. 512 sq. cm
  3. 1024 sq. cm
  4. 512/3 sq. cm

Answer (Detailed Solution Below)

Option 2 : 512 sq. cm

Sum of an infinite GP Question 7 Detailed Solution

Concept:

A square is drawn by joining mid-points of the sides of a square. Another square is drawn inside the second square in the same way and the process is continued indefinitely. 

The side of the first square = a 

Side of the second square = \(\rm \dfrac a {\sqrt2}\) and so on....

If the series is in GP with common ratio r and first term a then sum of infinity GP = \(\rm \dfrac a {1-r}\)

Calculations:

Given, a square is drawn by joining mid-points of the sides of a square. Another square is drawn inside the second square in the same way and the process is continued infinity.

The side of the first square is 16 cm.

Side of second square = \(\rm \dfrac {16}{\sqrt2}\) = 8√2 cm.

Side of third square = 8 cm. and so on... 

Sum of area of squares = (16)+ (8 √2)+ (8)+ ....

Sum of area of squares = 256 + 128 + 64 + ....

The series is in GP

⇒Sum of the area of squares = \(\dfrac {256}{1-\dfrac12}\)

Sum of the area of squares = 512 

Sum of an infinite GP Question 8:

Consider an infinite geometric series with first term 'a' and common ratio 'r'. If the sum of infinite geometric series is 4 and the second term is \(\frac{3}{4}\) then

  1. \(a=1 \quad r=-\frac{3}{4}\)
  2. \(a=3 \quad r=\frac{1}{4}\)
  3. \(a=-3 \quad r=-\frac{1}{4}\)
  4. \(a=-1 \quad r=\frac{3}{4}\)

Answer (Detailed Solution Below)

Option 2 : \(a=3 \quad r=\frac{1}{4}\)

Sum of an infinite GP Question 8 Detailed Solution

Concept Used:

Sum of an infinite geometric series: \(\frac{a}{1-r}\), where |r| < 1

Second term of a geometric series: ar

Calculation

Given, \(\frac{a}{1-r} = 4\)...(1)

Also given, \(ar = \frac{3}{4}\)...(2)

From (1), \(a = 4(1-r)\)

Substituting in (2),

\(4(1-r)r = \frac{3}{4}\)

\(4r - 4r^2 = \frac{3}{4}\)

\(16r - 16r^2 = 3\)

\(16r^2 - 16r + 3 = 0\)

\((4r - 3)(4r - 1) = 0\)

\(r = \frac{3}{4}\) or \(r = \frac{1}{4}\)

If \(r = \frac{3}{4}\), then from (2), \(a(\frac{3}{4}) = \frac{3}{4} \implies a = 1\)

If \(r = \frac{1}{4}\), then from (2), \(a(\frac{1}{4}) = \frac{3}{4} \implies a = 3\)

\(a = 1, r = \frac{3}{4}\) or \(a = 3, r = \frac{1}{4}\)

Hence option 2 are correct

Sum of an infinite GP Question 9:

In a game, A and B play against each other. They throw a die alternatively until they get the face of odd numbers. Once one gets odds numbers, he wins. i.e., there is only one winner and they keep playing until one of them wins. Consider that B plays first. What is the probability of A winning

  1. \(\rm 2\over 3\)
  2. \(\rm 3\over 4\)
  3. \(\rm 1\over 2\)
  4. \(\rm 1\over 3\)

Answer (Detailed Solution Below)

Option 4 : \(\rm 1\over 3\)

Sum of an infinite GP Question 9 Detailed Solution

Concept:

In a random experiment, let S be the sample space and let E ⊆ S. Then, E is an event.

The probability of occurrence of E is defined as,

\(\rm P(E)=\frac{n(E)}{n(S)}\)where, n(E) = number of elements in E and n(S) = number of possible outcomes.

Sum of infinite term in G.P. = \(\rm \frac {a} {(1 - r)}\)

Here a = first term, r = common ratio

Calculation:

n(s) = {1, 2, 3, 4, 5, 6} = 6

Odd number = {1, 3, 5} = 3

Probability of odd number = \(\rm \frac {3} {6} = \frac {1} {2}\)

Winning probability = \(\rm \frac{1}{2}\)

Lossing probabily = \(\rm \frac{1}{2}\)

If B play first so conditions are:

(B loss)(A win) + (B loss)(A loss)(B loss)(A win) + (B loss)(A loss)(B loss)(A loss)(B loss)(A win) + ...+ infinite

\(\rm [{\frac {1}{2} \times \frac {1}{2}}] + [{\frac {1}{2} \times \frac {1}{2} \times \frac {1}{2} \times \frac {1}{2}}] + [{\frac {1}{2} \times \frac {1}{2} \times \frac {1}{2} \times \frac {1}{2}\times \frac {1}{2} \times \frac {1}{2}}] +\cdots + \infty \)

Take common \(\rm 1\over4\)

\(\rm \frac{1} {4} [1 +{\frac {1}{2} \times \frac {1}{2}} + {\frac {1}{2} \times \frac {1}{2} \times \frac {1}{2} \times \frac {1}{2}} + {\frac {1}{2} \times \frac {1}{2} \times \frac {1}{2} \times \frac {1}{2}\times \frac {1}{2} \times \frac {1}{2}}+\cdots+ \infty] \)

Here a = 1, r = \(\rm 1\over4\)

\(\rm \frac {1} {4} \times \frac {1} {(1 - \frac {1} {4})}\)

\(\rm \frac {1} {4} \times \frac {(4 \;\times\; 1)} {3}\)

\(\rm 1\over 3\)

Sum of an infinite GP Question 10:

Let a, ar, ar2, ........ be an infinite G.P. If \(\displaystyle\sum_{n=0}^{\infty}\rm ar^n = 57\) and \(\displaystyle\sum_{n=0}^{\infty}\rm a^3r^{3n} = 9747\), then a + 18r is equal to :

  1. 27
  2. 46
  3. 38
  4. 31

Answer (Detailed Solution Below)

Option 4 : 31

Sum of an infinite GP Question 10 Detailed Solution

Calculation

\(\sum_{\mathrm{n}=0}^{∞} \mathrm{ar}^{\mathrm{n}}\) = 57

⇒ a + ar + ar2 + ∞ = 57

⇒ \(\frac{\mathrm{a}}{1-\mathrm{r}}=57 \rm \quad ...(I)\)

\(\rm \sum_{n=0}^{∞} a^3 r^{3 n}\) = 9747

⇒ a3 + a3. r3 + a3. r6 + .... ∞ = 9746

⇒ \(\frac{a^3}{1-r^3}=9746 \rm \quad ...(II)\)

From (I) and (II)

\(\frac{(\mathrm{I})^3}{\text { (II) }} \Rightarrow \frac{\frac{\mathrm{a}^3}{(1-\mathrm{r})^3}}{\frac{\mathrm{a}^3}{1-\mathrm{r}^3}}=\frac{57^3}{9717}=19\)

On solving, r = \(\frac{2}{3}\) and r = \(\frac{3}{2}\) (rejected)

⇒ a = 19

∴ a + 18r = 19 + 18 × \(\frac{2}{3}\) = 31

Hence option (4) is correct

Get Free Access Now
Hot Links: teen patti pro teen patti flush teen patti dhani teen patti palace teen patti 50 bonus