Inner Product Spaces, Orthonormal Basis MCQ Quiz in বাংলা - Objective Question with Answer for Inner Product Spaces, Orthonormal Basis - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 29, 2025

পাওয়া Inner Product Spaces, Orthonormal Basis उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Inner Product Spaces, Orthonormal Basis MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Inner Product Spaces, Orthonormal Basis MCQ Objective Questions

Top Inner Product Spaces, Orthonormal Basis MCQ Objective Questions

Inner Product Spaces, Orthonormal Basis Question 1:

For a, b ∈ ℝ, let

p(x, y) = a2x1y1 + abx2y1 + abx1y2 + b2x2y2,

x = (x1, x2), y = (y1, y2) ∈ ℝ2. For what values of a and b does

p : ℝ2 × ℝ2 → ℝ define an inner product?

  1. a > 0, b > 0
  2. ab > 0
  3. a = 0, b = 0
  4. For no values of a, b

Answer (Detailed Solution Below)

Option 4 : For no values of a, b

Inner Product Spaces, Orthonormal Basis Question 1 Detailed Solution

Given - 

For a, b ∈ ℝ, let

p(x, y) = a2x1y1 + abx2y1 + abx1y2 + b2x2y2,

x = (x1, x2), y = (y1, y2) ∈ ℝ2.

Explanation - 

p(x, y) = a2x1y1 + abx2y1 + abx1y2 + b2x2y2,

p(x, x) = a2x12+ abx2x1 + abx1x2 + b2x22

= (ax1+bx2)2   where x = (x1,x2)

Now if a, b ∈ ℝ, then for \(x_1=\frac{1}{a} \ \ and \ \ x_2=\frac{-1}{b}\)

\((a(\frac{1}{a})+b(\frac{-1}{b}))=1-1=0\)
So it can not be an inner product.

If a = 0 and \(b \neq 0\), then for \(x_1 =1 \ \ and \ \ x_2 = 0\)
we get p(x, x) = 0 so it can not be an inner
product.

If \(a \neq 0\) and b = 0, then but but \(x_1 =0 \ \ and \ \ x_2 = 1\)

we get p(x, x)=0 so it can not be an inner product.

If a=0, b=0, then for every \(x \neq 0\)

p(x, x)=0 which is not possible in an inner product,

so option (d) is correct option.

Inner Product Spaces, Orthonormal Basis Question 2:

Let V be the vector space of polynomials f(t) with inner product \(\rm . According to Gram-schmidth orthogonal process on {1, t, t2, t3

  1. {1, t, 3t2 - 1, 5t3 - 3t} is orthogonal basis
  2. {1, t, 3t+ 1, 5t3 + 3t} is orthogonal basis 
  3. \(\rm \left\{1, t, \frac{1}{2}\left(3 t^2-1\right), \frac{1}{2}\left(5 t^3-3 t\right)\right\}\) is orthogonal basis
  4. None of the above

Answer (Detailed Solution Below)

Option :

Inner Product Spaces, Orthonormal Basis Question 2 Detailed Solution

Concept:

Gram-Schmidt Method: Given an arbitrary basis {u1, u2, …, un} for an n-dimensional inner product space V, the Gram-Schmidt algorithm constructs an orthogonal basis {v1, v2,…,vn} for V such that

v1 = u1
v2 = \(u_2-\frac{}{}v_1\)

v3\(u_3-\frac{}{}v_1\) - \(\frac{}{}v_2\)

v4 = u4\(\frac{}{}v_1\) - \(\frac{}{}v_2\) - \(\frac{}{}v_3\)

Explanation:

Here \(\rm  ....(i)

Given basis {1, t, t2, t3}

Let u1 = 1, u2 = t, u3 = t2u4 = t3

Result: \(\int_{-a}^af(x)dx = \begin{cases}2\int_0^af(x)dx, \text{if f(x) is even}\\0, \text{if f(x) is odd}\end{cases}\)......(ii)

Using Gram-Schmidt Method

v1 = 1

v2 = t - \(\frac{}{<1, 1>}1\)

\(\int_{-1}^1td t\) = 0 (using (i) and (ii))

So v2 = t - 0 = t

v3 = \(t^2\) - \(\frac{}{<1, 1>}1\) - \(\frac{}{}t\)

Now, 2, 1> = \(\int_{-1}^1t^2d t=2\int_0^1t^2dt=\frac23\)

<1, 1> = \(\int_{-1}^1d t=2\int_0^1dt=2\)

2, t> = \(\int_{-1}^1t^3d t\) = 0

So v3 = \(t^2\) - \(\frac13\) which can be written as v3 = 3\(t^2\) - 1

v4 = \(t^3\) - \(\frac{}{<1, 1>}1\) - \(\frac{}{}t\) - \(\frac{}{<(3t^2-1), (3t^2-1)>}(3t^2-1)\)

Now, 3, 1> = \(\int_{-1}^1t^3d t\) = 0

<1, 1> = \(\int_{-1}^1d t=2\int_0^1dt=2\)

3, t> = \(\int_{-1}^1t^4d t=2\int_0^1t^4dt=\frac25\)

\(\int_{-1}^1t^2d t=2\int_0^1t^2dt=\frac23\)

Using same method \(\) = 0

So v4 = \(t^3\) - \(\frac35\) which can be written as v3 = 5\(t^3\) - 3

 Hence {1, t, 3t2 - 1, 5t3 - 3t} is orthogonal basis

Normalizing the vectors in the orthogonal basis, we obtain the orthonormal basis
\(\rm \left\{1, t, \frac{1}{2}\left(3 t^2-1\right), \frac{1}{2}\left(5 t^3-3 t\right)\right\}\)
 
(1) is correct
 

Inner Product Spaces, Orthonormal Basis Question 3:

Let V be an inner product space and let v1, v2, v3 ∈ V be an orthogonal set of vectors. Which of the following statements are true?

  1. The vectors v1 + v2 + 2v3, v2 + v3, v2 + 3v3 can be extended to a basis of V.
  2. The vectors v1 + v2 + 2v3, v2 + v3, v2 + 3v3 can be extended to an orthogonal basis of V.
  3. The vectors v1 + v2 + 2v3, v2 + v3, 2v1 + v2 + 3v3 can be extended to a basis of V.
  4. The vectors v1 + v2 + 2v3, 2v1 + v2 + v3, 2v1 + v2 + 3v3 can be extended to a basis of V.

Answer (Detailed Solution Below)

Option :

Inner Product Spaces, Orthonormal Basis Question 3 Detailed Solution

According To the Official Answer key 

No option provided is correct 

We will Update the Question and Solution 

Once the Result will comes out.

Inner Product Spaces, Orthonormal Basis Question 4:

Any orthogonal set of non-zero vectors in an inner product space V is

  1. may or may not be linearly independent
  2. linearly independent
  3. linearly Dependent
  4. empty

Answer (Detailed Solution Below)

Option 2 : linearly independent

Inner Product Spaces, Orthonormal Basis Question 4 Detailed Solution

Given - Any orthogonal set of non-zero vectors in an inner product space V is ?

Concept - Any orthogonal set of non-zero vectors in an inner product space V is Linearly independent.

Explanation - 

Using the Concept, we directly get the result.

Hence the option (ii) is correct.

For example - Orthogonal sets are automatically linearly independent.

To see this result, suppose that  \(v_1, . . ., v_k \) are in this orthogonal set, and there are constants \(c_1, . . ., c_k\) such that \( c_1 v_1 + · · · + c_k v_k = 0. \)For any j between 1 and k, take the dot product of \(v_j\) with both sides of this equation. We obtain \(c_j ||v_j ||^2 = 0,\) and since \(v_j\) is not(otherwise the set could not be orthogonal), this forces \(c_j = 0.\) Thus the only linear combinations of vectors in the set which equal the 0 vector are those in which all of the coefficients are zero, which means that the set is linearly independent.

Inner Product Spaces, Orthonormal Basis Question 5:

Let C[0, 1] be the space of continuous real valued functions on [0, 1]. Define f, g = \(\int_0^1\) f(t) (g(t))2dt for all f, g ∈ C[0, 1]

Then which of the following statements is true? 

  1. 〈 , 〉 is an inner product on C[0, 1]
  2. 〈 , 〉 is a bilinear form on C[0, 1] but is not an inner product on C[0, 1]
  3. 〈 , 〉 is not a bilinear form on C[0, 1]
  4. 〈f, f〉 ≥ 0 for all ƒ ∈ C[0, 1]

Answer (Detailed Solution Below)

Option 3 : 〈 , 〉 is not a bilinear form on C[0, 1]

Inner Product Spaces, Orthonormal Basis Question 5 Detailed Solution

Explanation:

We have, f, g = \(\int_0^1\) f(t) (g(t))2dt

for all f, g ∈ C[0, 1] then, 

\( = \int_0^1 f(t) (\alpha g(t))^2 dt\)

\( = \alpha^2 \int_0^1 f(t) ( g(t))^2 dt \)

\( = \alpha^2 < f, \alpha g>\)

It is not a bilinear form so it is not an inner product.

If we choose f(t) = \(\frac{1}{2}\) we get,

\( = \int_0^1 f(t)(f(t))^2 dt \)

 \(= \int_0^1 (f(t))^3 dt = \int_0^1 (\frac{-1}{2})^3 dt\) 

\(\frac{-1}{8} < 0\)

Therefore, options 1, 2 and 4 are wrong.

The correct answer is option (3). 

Inner Product Spaces, Orthonormal Basis Question 6:

Which of the following are inner products on \(\mathbb{R}^2\)?

  1. \(\left\langle {\left( {\begin{array}{*{20}{c}} {{x_1}}\\ {x_2} \end{array}} \right),\left( {\begin{array}{*{20}{c}} {{y_1}}\\ {{y_2}} \end{array}} \right)} \right\rangle = {x_1}{y_1} + 2{x_1}{y_2} + 2{x_2}{y_1} + {x_2}{y_2}\)
  2. \(\left\langle {\left( {\begin{array}{*{20}{c}} {{x_1}}\\ {x_2} \end{array}} \right),\left( {\begin{array}{*{20}{c}} {{y_1}}\\ {{y_2}} \end{array}} \right)} \right\rangle = {x_1}{y_1} + {x_1}{y_2} + {x_2}{y_1} + 2{x_2}{y_2}\)
  3. \(\left\langle {\left( {\begin{array}{*{20}{c}} {{x_1}}\\ {x_2} \end{array}} \right),\left( {\begin{array}{*{20}{c}} {{y_1}}\\ {{y_2}} \end{array}} \right)} \right\rangle = {x_1}{y_1} + {x_1}{y_2} + {x_2}{y_1} + {x_2}{y_2}\)
  4. \(\left\langle {\left( {\begin{array}{*{20}{c}} {{x_1}}\\ {x_2} \end{array}} \right),\left( {\begin{array}{*{20}{c}} {{y_1}}\\ {{y_2}} \end{array}} \right)} \right\rangle = {x_1}{y_1} - \frac{1}{2}{x_1}{y_2} - \frac{1}{2}{x_2}{y_1} + {x_2}{y_2}\)

Answer (Detailed Solution Below)

Option :

Inner Product Spaces, Orthonormal Basis Question 6 Detailed Solution

Explanation:

Recall: The inner product <,> on Rn satisfies the following properties (u, v, ω ∈ [Rn, a, b ∈ R

(1) Linearity : = a + b ;

(2) Symmetric property : =

(3) Positive Definite :  ≥ 0 and = 0 Iff u = 0

(1) Let u = (x1, x2) then \(\rm x_1^2+x_2^2+4x_1x_2\) Take, (x1, x2) = (-1, 1) ⇒ 1 + 1 - 4 = -3 \(\ngtr\) 0

∴ It is not an inner product on R2

Similarly, (3), <4, 4> = \(\rm x_1^2+2x_1x_2+x_2^2\) and for (x1, x2) = (-1, 1), <4, 4> \(\ngtr\) 0

option (1) & (3) discorded.

(2) Linearity Property : Take u = (x1, x2), v = (y1, y2), then = 1, x2) + b(y1, y2), (z1, z2)>

= <(ax1 + by1, ax2 + by2), (z1, z2)>

= (ax1 + by1) z1 + (ax1 + by1z2 + (ax2 + by2) z1 +  2(ax2 + by2) z2 

= 1, x2)(bz1, z2)> + 1, y2), (z1, z2)>

= +

Symmetric : <(x1, x2), (y1, y2)> = x1y1 + x2y2 + x2y1 + 2x2y2

= y1x1 + y1x2 + x1y2 + 2x2y2

= <(y1, y2), (x1, x2)>

Positive Definite: <(x1, x2), (x1, x2)> = \(\rm x_1^2+x_1x_2+x_2x_1+2x_2^2\)

\(\rm x_1^2+2x_2^2+2x_1x_2=(x_1+x_2)^2+x_2^2>0\)

And (x1, \(\rm x_2^2\)) + \(\rm x_2^2\) = 0 ⇒ (x1, x2) = (0, 0) (∴ sum of two positive term can't be zero)

∴ \(\left<\left|\begin{matrix}x_1\\\ x_2\end{matrix}\right),\left(\begin{matrix}y_1\\\ y_2 \end{matrix}\right)\right>=x_1y_1+x_1y_2+x_2y_1+2x_2y_2\)

is an inner product on ℝ2

Similarly, \(\left<\left|\begin{matrix}x_1\\\ x_2\end{matrix}\right),\left(\begin{matrix}y_1\\\ y_2 \end{matrix}\right)\right>=x_1y_1-\frac{1}{2}x_1y_2-\frac{1}{2}x_2y_1+x_2y_2\)

is an inner product on ℝ2

option (2), (4) are true

Inner Product Spaces, Orthonormal Basis Question 7:

Inner product spaces over the field of complex numbers are sometimes referred to as

  1. real vector space
  2. abstract vector space
  3. vector space
  4. unitary space

Answer (Detailed Solution Below)

Option 4 : unitary space

Inner Product Spaces, Orthonormal Basis Question 7 Detailed Solution

Concept:

  • Let v = (v1, . . . , vn) and w = (w1, . . . , wn) ∈ Rn .
  • We define the inner product (or dot product or scalar product) of v and w by the following formula: < v, w > = v1w1 + · · · + vnwn.
  • Define the length or norm of v by the formula || v || = √< v, v > =√ { v12 1 + · · · + vn2 } .

 

We have the following properties for the inner product:

1. (Bilinearity) For all v, u, w ∈ R , < v + u, w > = < v + w > + < u + w > and < v ,u + w > = < v + u > + < v + w >. For all v, w ∈ Rn and t ∈ R, < tv, w > = < vt, w > = t< v, w >.

2. (Symmetry) For all v, w ∈ Rn , < v, w > = < w, v >.

3. (Positive definiteness) For all v ∈ Rn , < v, v > = || v ||2 ≥ 0, and  < v, v > = 0  if and only if v = 0.

Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces.

​Hence, the correct answer is option 4)

Inner Product Spaces, Orthonormal Basis Question 8:

Let 〈·, ·〉 denote the standard inner product on ℝ7. Let Σ = {v1, . . ., v5} ⊆ ℝ7 be a set of unit vectors such that 〈vi, vj〉 is a non-positive integer for all 1 ≤ i ≠ j ≤ 5. Define N(Σ) to be the number of pairs (r, s), 1 ≤ r, s ≤ 5, such that 〈vr, vs〉 ≠ 0. The maximum possible value of N(Σ) is equal to

  1. 9
  2. 10
  3. 14
  4. 5

Answer (Detailed Solution Below)

Option 1 : 9

Inner Product Spaces, Orthonormal Basis Question 8 Detailed Solution

Explanation:

We have a set \(\Sigma = \{v_1, v_2, v_3, v_4, v_5\} \subset \mathbb{R}^7\) of unit vectors.

For each pair of distinct vectors \(v_i\) and \(v_j\) (with i \(\neq\) j ), the inner product \(\langle v_i, v_j \rangle\) is a non-positive integer,

which means it could be 0 or any negative integer.

We are asked to maximize N(\(\Sigma\)) , defined as the number of pairs (r, s) with \(1 \leq r < s \leq 5\) such that \(\langle v_r, v_s \rangle \neq 0\) .

Since there are 5 vectors, the total number of unique pairs (r, s) with \(1 \leq r < s \leq 5\) is

\(\binom{5}{2} = 10\)

To maximize N(\(\Sigma\)) , we want as many pairs as possible to have \(\langle v_r, v_s \rangle \neq 0\)

1. Non-positive Integer Condition: Each inner product \(\langle v_i, v_j \rangle\) (for i  \(\neq\)j ) is a non-positive integer, so it can be 0 or a negative integer.

2. Unit Vector Condition: Each vector \(v_i\) is a unit vector, meaning  \(\langle v_i, v_j \rangle\)= 1 .

Since we are maximizing the count of non-zero inner products, we want as many pairs as possible

to have a negative inner product, while satisfying the given conditions.

as for atleast one choice of i and j, \(\langle v_i, v_j \rangle\) =0

Hence required maximum value of  N(\(\Sigma\)) = 9.

Hence option 1) is correct.

Inner Product Spaces, Orthonormal Basis Question 9:

Let ℝn, n ≥ 2, be equipped with standard inner product. Let (v1, v2, ..., vn) be n column vectors forming an orthonormal basis of ℝn. Let A be the n × n matrix formed by the column vectors v1, ... vn. Then

  1. A = A-1
  2. A = AT
  3. A-1 = AT
  4. Det(A) = 1

Answer (Detailed Solution Below)

Option 3 : A-1 = AT

Inner Product Spaces, Orthonormal Basis Question 9 Detailed Solution

Concept:

A square matrix A is called an orthogonal matrix if A= A-1 

Explanation:

(v1, v2, ..., vn) be n column vectors forming an orthonormal basis of ℝn.

A is the n × n matrix formed by the column vectors v1, ... vn

i.e., A is formed by the orthonormal vectors.

Hence A is orthogonal.

A= A-1

Option (3) is true

Inner Product Spaces, Orthonormal Basis Question 10:

Consider ℝ4 with the inner product < 𝑥, 𝑦 > = \(\rm \Sigma_{i=1}^4x_iy_i\), for 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4 ) and 𝑦 = (𝑦1, 𝑦2, 𝑦3, 𝑦4 ).

Let 𝑀 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4 ) ∈ ℝ4 ∶ 𝑥1 = 𝑥3 } and 𝑀 denote the orthogonal complement of 𝑀. The dimension of 𝑀 is equal to ________. 

Answer (Detailed Solution Below) 1

Inner Product Spaces, Orthonormal Basis Question 10 Detailed Solution

Concept -

(i) We know that the formula for the orthogonal complement -

dim(M) + dim(MT) = dim (ℝ4 )

(ii) dim (M) = dim (4 ) - number of restriction

Explanation -

we have 𝑀 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4 ) ∈ ℝ4 ∶ 𝑥1 = 𝑥3 } 

now use the formula -

dim (M) = dim (4 ) - number of restriction

dim(M) = 4 -1 = 3

Now use the another formula -

dim(M) + dim(MT) = dim (4 )

⇒ dim(MT) = 4 - 3 = 1

Hence the correct answer is 1.

Get Free Access Now
Hot Links: teen patti apk download teen patti joy teen patti wala game teen patti download apk