The value of \(\smallint \frac{{{e^x}}}{{{e^{2x}} - 4}}dx\)  will be ______, where C is an arbitrary constant.

This question was previously asked in
AAI ATC Junior Executive 2018 Official Paper (Shift 1)
View all AAI JE ATC Papers >
  1. \(\frac{1}{2}\log \left| {\frac{{{e^x} + 1}}{{{e^x} - 1}}} \right| + C\)
  2. \(\frac{1}{3}\log \left| {\frac{{{2e^x} - 1}}{{{2e^x} + 1}}} \right| + C\)
  3. \(\frac{1}{4}\log \left| {\frac{{{e^x} - 2}}{{{e^x} + 2}}} \right| + C\)
  4. \(\frac{1}{2}\log \left| {\frac{{{e^{2x}} + 2}}{{{e^{2x}} - 2}}} \right| + C\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{1}{4}\log \left| {\frac{{{e^x} - 2}}{{{e^x} + 2}}} \right| + C\)
Free
AAI ATC JE Physics Mock Test
7.1 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

Concept:

From the Standard integral:

\(% MathType!MTEF!2!1!+- % feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGHRiI8daWcaaWdaeaapeGaamizaiaadIhaa8aabaWdbiaadIha % paWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaadggapaWaaWbaaS % qabeaapeGaaGOmaaaaaaGccqGH9aqpdaWcaaWdaeaapeGaaGymaaWd % aeaapeGaaGOmaiaadggaaaGaamiBaiaad+gacaWGNbWaaqWaa8aaba % Wdbmaalaaapaqaa8qacaWG4bGaeyOeI0IaamyyaaWdaeaapeGaamiE % aiabgUcaRiaadggaaaaacaGLhWUaayjcSdaaaa!4EB0! \smallint \frac{{dx}}{{{x^2} - {a^2}}} = \frac{1}{{2a}}log\left| {\frac{{x - a}}{{x + a}}} \right|\)\(\smallint \frac{{{dx}}}{{{x^2} - a^2}}=\frac{1}{2a}log \ |\frac{x-a}{x+a}|+C, \ x>a\)

Calculation:

\(\smallint \frac{{{e^x}}}{{{e^{2x}} - 4}}dx\)

\(\smallint \frac{{{e^x}}}{{({e^{x})^2} - (2)^2}}dx\)

let t = ex

dt = ex dx

\(\smallint \frac{{{dt}}}{{({t)^2} - (2)^2}}\)

From the standard integral:

\(% MathType!MTEF!2!1!+- % feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGHRiI8daWcaaWdaeaapeGaamizaiaadIhaa8aabaWdbiaadIha % paWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaadggapaWaaWbaaS % qabeaapeGaaGOmaaaaaaGccqGH9aqpdaWcaaWdaeaapeGaaGymaaWd % aeaapeGaaGOmaiaadggaaaGaamiBaiaad+gacaWGNbWaaqWaa8aaba % Wdbmaalaaapaqaa8qacaWG4bGaeyOeI0IaamyyaaWdaeaapeGaamiE % aiabgUcaRiaadggaaaaacaGLhWUaayjcSdaaaa!4EB0! \smallint \frac{{dx}}{{{x^2} - {a^2}}} = \frac{1}{{2a}}log\left| {\frac{{x - a}}{{x + a}}} \right|\)\(\smallint \frac{{{dt}}}{{({t)^2} - (2)^2}}=\frac{1}{4}log \ |\frac{t-a}{t+a}|+C\)

Put t = ex in the above equation, we get:

\(\smallint \frac{{{e^x}}}{{{e^{2x}} - 4}}dx=\frac{1}{4}\log \left| {\frac{{{e^x} - 2}}{{{e^x} + 2}}} \right| + C\)

Note:

Some important formulas of integration are:

\(\smallint \frac{{{dx}}}{{{a^2} - x^2}}=\frac{1}{2a}log \ |\frac{a+x}{a-x}|+C, \ x<a\)

\(\smallint \frac{{{dx}}}{{{\sqrt{{a^2} - x^2}}}}=sin^{-1}(\frac{x}{a})+C\)

\(\smallint \frac{{{dx}}}{{{\sqrt{{x^2} + a^2}}}}=log (\ x + \sqrt{a^2+x^2})+C\)

Latest AAI JE ATC Updates

Last updated on Jun 19, 2025

-> The AAI ATC Exam 2025 will be conducted on July 14, 2025 for Junior Executive.. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on April 4, 2025, along with the details of application dates, eligibility, and selection process.

-> A total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in the Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer-Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

Get Free Access Now
Hot Links: teen patti gold new version teen patti wealth teen patti master plus teen patti all games teen patti casino download