Question
Download Solution PDFThe value of \(\smallint \frac{{{e^x}}}{{{e^{2x}} - 4}}dx\) will be ______, where C is an arbitrary constant.
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFConcept:
From the Standard integral:
\(% MathType!MTEF!2!1!+- % feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGHRiI8daWcaaWdaeaapeGaamizaiaadIhaa8aabaWdbiaadIha % paWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaadggapaWaaWbaaS % qabeaapeGaaGOmaaaaaaGccqGH9aqpdaWcaaWdaeaapeGaaGymaaWd % aeaapeGaaGOmaiaadggaaaGaamiBaiaad+gacaWGNbWaaqWaa8aaba % Wdbmaalaaapaqaa8qacaWG4bGaeyOeI0IaamyyaaWdaeaapeGaamiE % aiabgUcaRiaadggaaaaacaGLhWUaayjcSdaaaa!4EB0! \smallint \frac{{dx}}{{{x^2} - {a^2}}} = \frac{1}{{2a}}log\left| {\frac{{x - a}}{{x + a}}} \right|\)\(\smallint \frac{{{dx}}}{{{x^2} - a^2}}=\frac{1}{2a}log \ |\frac{x-a}{x+a}|+C, \ x>a\)
Calculation:
\(\smallint \frac{{{e^x}}}{{{e^{2x}} - 4}}dx\)
\(\smallint \frac{{{e^x}}}{{({e^{x})^2} - (2)^2}}dx\)
let t = ex
dt = ex dx
\(\smallint \frac{{{dt}}}{{({t)^2} - (2)^2}}\)
From the standard integral:
\(% MathType!MTEF!2!1!+- % feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGHRiI8daWcaaWdaeaapeGaamizaiaadIhaa8aabaWdbiaadIha % paWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaadggapaWaaWbaaS % qabeaapeGaaGOmaaaaaaGccqGH9aqpdaWcaaWdaeaapeGaaGymaaWd % aeaapeGaaGOmaiaadggaaaGaamiBaiaad+gacaWGNbWaaqWaa8aaba % Wdbmaalaaapaqaa8qacaWG4bGaeyOeI0IaamyyaaWdaeaapeGaamiE % aiabgUcaRiaadggaaaaacaGLhWUaayjcSdaaaa!4EB0! \smallint \frac{{dx}}{{{x^2} - {a^2}}} = \frac{1}{{2a}}log\left| {\frac{{x - a}}{{x + a}}} \right|\)\(\smallint \frac{{{dt}}}{{({t)^2} - (2)^2}}=\frac{1}{4}log \ |\frac{t-a}{t+a}|+C\)
Put t = ex in the above equation, we get:
\(\smallint \frac{{{e^x}}}{{{e^{2x}} - 4}}dx=\frac{1}{4}\log \left| {\frac{{{e^x} - 2}}{{{e^x} + 2}}} \right| + C\)
Note:
Some important formulas of integration are:
\(\smallint \frac{{{dx}}}{{{a^2} - x^2}}=\frac{1}{2a}log \ |\frac{a+x}{a-x}|+C, \ x<a\)
\(\smallint \frac{{{dx}}}{{{\sqrt{{a^2} - x^2}}}}=sin^{-1}(\frac{x}{a})+C\)
\(\smallint \frac{{{dx}}}{{{\sqrt{{x^2} + a^2}}}}=log (\ x + \sqrt{a^2+x^2})+C\)
Last updated on Jun 19, 2025
-> The AAI ATC Exam 2025 will be conducted on July 14, 2025 for Junior Executive..
-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025.
-> AAI JE ATC 2025 notification is released on April 4, 2025, along with the details of application dates, eligibility, and selection process.
-> A total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.
-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in the Airports Authority of India (AAI).
-> The Selection of the candidates is based on the Computer-Based Test, Voice Test and Test for consumption of Psychoactive Substances.
-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).
-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.
-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.