Question
Download Solution PDF\(\mathop \smallint \limits_{ - 1}^1 {\rm{x}}\left| {\rm{x}} \right|{\rm{dx}}\) is equal to
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFConcept:
1. \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right) = \mathop \smallint \nolimits_{\rm{a}}^{\rm{c}} {\rm{f}}\left( {\rm{x}} \right) + \mathop \smallint \nolimits_{\rm{c}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right)\)
2. \({\rm{f}}\left( {\rm{x}} \right) = \left| {\rm{x}} \right| = \left\{ {\begin{array}{*{20}{c}} { - x,\;x < 0}\\ {x,\;x \ge 0} \end{array}} \right.\)
Calculation:
Let, \({\rm{I}} = \mathop \smallint \limits_{ - 1}^1 {\rm{x}}\left| {\rm{x}} \right|{\rm{dx}}\)
\( = \mathop \smallint \nolimits_{ - 1}^1 {\rm{x}}\left| {\rm{x}} \right|{\rm{dx}}\)
\(\because \mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right) = \mathop \smallint \nolimits_{\rm{a}}^{\rm{c}} {\rm{f}}\left( {\rm{x}} \right) + \mathop \smallint \nolimits_{\rm{c}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right)\)
\(= \mathop \smallint \nolimits_{ - 1}^0 {\rm{x}}\left| {\rm{x}} \right|{\rm{dx}} + \mathop \smallint \nolimits_0^1 {\rm{x}}\left| {\rm{x}} \right|{\rm{dx}}\)
For, -1 to 0 |x| = -x
For, 0 to 1 |x| = x
\( \Rightarrow \mathop \smallint \nolimits_{ - 1}^0 {\rm{x}}\left( { - {\rm{x}}} \right){\rm{dx}} + \mathop \smallint \nolimits_0^1 {\rm{x}}\left( {\rm{x}} \right){\rm{dx}}\)
\( \Rightarrow \mathop \smallint \nolimits_{ - 1}^0 - {{\rm{x}}^2}{\rm{dx}} + \mathop \smallint \nolimits_0^1 {{\rm{x}}^2}{\rm{dx}}\)
\( \Rightarrow - \left[ {\frac{{{{\rm{x}}^3}}}{3}} \right]_{ - 1}^0 + \left[ {\frac{{{{\rm{x}}^3}}}{3}} \right]_0^1\)
\( \Rightarrow - \left[ {0 - \left( { - \frac{1}{3}} \right)} \right] + \left[ {\frac{1}{3}} \right]\)
\(\Rightarrow - \frac{1}{3} + \frac{1}{3}\)
⇒ 0
Hence, option (1) is correctLast updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.