Let L1 and L2 be two parallel lines with the equations \(\rm \vec{r}=\vec{a}_1 +\lambda \vec{b}\) and \(\rm r=\vec{a}_2 + \mu\vec{b}\) respectively. The shortest distance between them is:

  1. \(\rm d=\left|\dfrac{\vec{b}\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\)
  2. \(\rm d=\left|\dfrac{\vec{b}\cdot (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\)
  3. \(\rm d=\left|\dfrac{\vec{a}_1\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\)
  4. \(\rm d=\left|\dfrac{\vec{a}_2\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\)

Answer (Detailed Solution Below)

Option 1 : \(\rm d=\left|\dfrac{\vec{b}\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\)
Free
CUET General Awareness (Ancient Indian History - I)
11.8 K Users
10 Questions 50 Marks 12 Mins

Detailed Solution

Download Solution PDF

Concept:

  • If two lines are parallel, then the distance between them is fixed.
  • The distance between two parallel lines \(\rm \vec{r}=\vec{a}_1 +\lambda \vec{b}\) and \(\rm r=\vec{a}_2 + \mu\vec{b}\) is given by the formula: \(\rm d=\left|\dfrac{\vec{b}\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\).

 

Calculation:

Using the formula for the distance between two parallel lines, we can say that the distance is \(\rm d=\left|\dfrac{\vec{b}\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\).

Latest CUET Updates

Last updated on Jul 4, 2025

-> The CUET 2025 provisional answer key has been made public on June 17, 2025 on the official website.

-> The CUET 2025 Postponed for 15 Exam Cities Centres.

-> The CUET 2025 Exam Date was between May 13 to June 3, 2025. 

-> 12th passed students can appear for the CUET UG exam to get admission to UG courses at various colleges and universities.

-> Prepare Using the Latest CUET UG Mock Test Series.

-> Candidates can check the CUET Previous Year Papers, which helps to understand the difficulty level of the exam and experience the same.

More Skew Lines Questions

More Three Dimensional Geometry Questions

Get Free Access Now
Hot Links: teen patti master game teen patti joy teen patti bodhi teen patti 3a