Question
Download Solution PDF\(\rm (1+x)^3(1+\frac{1}{x})^4\) में x का स्वतंत्र पद क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
सामान्य पद: (x + y) n के विस्तार में सामान्य पद \({{\rm{T}}_{\left( {{\rm{r\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{\rm{n}}}{{\rm{C}}_{\rm{r}}} \times {{\rm{x}}^{{\rm{n}} - {\rm{r}}}} \times {{\rm{y}}^{\rm{r}}}\) द्वारा दिया गया है।
गणना:
हमें \(\rm (1+x)^3(1+\frac{1}{x})^4\) में x का स्वतंत्र पद ज्ञात करना है।
⇒ \(\rm (1+x)^3(1+\frac{1}{x})^4 = \frac{(x+1)^3(x+1)^4}{x^4} = (x+1)^7x^{-4}\)
चूँकि हम जानते हैं,\({{\rm{T}}_{\left( {{\rm{r\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{\rm{n}}}{{\rm{C}}_{\rm{r}}} \times {{\rm{x}}^{{\rm{n}} - {\rm{r}}}} \times {{\rm{y}}^{\rm{r}}}\)
⇒ \({{\rm{T}}_{\left( {{\rm{r\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{\rm{7}}}{{\rm{C}}_{\rm{r}}} \times {{\rm{x}}^{{\rm{7}} - {\rm{r}}}} \rm \times 1^r \times {{\rm{x}}^{\rm{-4}}}\)
= 7Cr x3-r
x के स्वतंत्र पद के लिए x का घांत शून्य होना चाहिए।
इसलिए, 3 - r = 0
⇒ r = 3
अतः पद T3+1 है और गुणांक 7C3 है।
Last updated on Jun 20, 2025
-> The Indian Navy SSR Agniveeer Merit List has been released on the official website.
-> The Indian Navy Agniveer SSR CBT Exam was conducted from 25th to 26th May 2025.
->The application window was open from 29th March 2025 to 16th April 2025.
-> The Indian Navy SSR Agniveer Application Link is active on the official website of the Indian Navy.
.->Only unmarried males and females can apply for Indian Navy SSR Recruitment 2025.
-> The selection process includes a Computer Based Test, Written Exam, Physical Fitness Test (PFT), and Medical Examination.
->Candidates Qualified in 10+2 with Mathematics & Physics from a recognized Board with a minimum 50% marks in aggregate can apply for the vacancy.
-> With a salary of Rs. 30,000, it is a golden opportunity for defence job seekers.
-> Candidates must go through the Indian Navy SSR Agniveer Previous Year Papers and Agniveer Navy SSR mock tests to practice a variety of questions for the exam.