उन सभी बिन्दुओं का समुच्चय, जहाँ फलन \({\rm{f}}\left( {\rm{x}} \right) = \sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} \) अवकलनीय है, कौन-सा है?

This question was previously asked in
NDA (Held On: 10 Sept 2017) Maths Previous Year paper
View all NDA Papers >
  1. (0, ∞)
  2. (-∞, ∞) 
  3. (-∞, 0) ∪ (0, ∞) 
  4. (-1, ∞)

Answer (Detailed Solution Below)

Option 3 : (-∞, 0) ∪ (0, ∞) 
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

  • एक फलन को उस बिंदु पर तब अवकलनीय कहा जाता है जब वहां उस बिंदु पर एक परिभाषित अवकलज होता है। 
  • हर शून्य नहीं होना चाहिए। 
  • श्रृंखला नियम: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {{\rm{f}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)} \right] = {\rm{\;f'}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right){\rm{g'}}\left( {\rm{x}} \right)\)

 

गणना:

दिया गया है: \({\rm{f}}\left( {\rm{x}} \right) = \sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} \)

\({\rm{f'}}\left( {\rm{x}} \right) = \frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{f}}\left( {\rm{x}} \right)} \right)\)

\(= \frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} } \right)\)

\(= \frac{1}{{2\sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} }} \times \frac{{\rm{d}}}{{{\rm{dx}}}}\left( {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} \right)\)      \(\left( \because {\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\sqrt {\rm{x}} } \right) = \frac{1}{{2\sqrt {\rm{x}} }}} \right)\)

\(\Rightarrow {\rm{f'}}\left( {\rm{x}} \right) = \frac{1}{{2\sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} }}\left( { - {{\rm{e}}^{ - {{\rm{x}}^2}}}} \right)\frac{{\rm{d}}}{{{\rm{dx}}}}\left( { - {{\rm{x}}^2}} \right)\)

\(= \frac{{\left( { - {{\rm{e}}^{ - {{\rm{x}}^2}}}} \right)}}{{2\sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} }}\left( { - 2{\rm{x}}} \right)\)

\(= \frac{{{\rm{x}}{{\rm{e}}^{ - {{\rm{x}}^2}}}}}{{\sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} }}\)

अब, x = 0 पर, f’(x) = 0/0

इसलिए, x = 0 पर छोड़कर f’(x), x के सभी मानों के लिए परिभाषित है। 

⇒ f(x), (-∞, 0) ∪ (0, ∞) पर अवकलनीय है। 

अतः विकल्प (3) सही है। 
Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Differential Calculus Questions

Get Free Access Now
Hot Links: teen patti live teen patti gold download teen patti master apk download