Question
Download Solution PDFउन सभी बिन्दुओं का समुच्चय, जहाँ फलन \({\rm{f}}\left( {\rm{x}} \right) = \sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} \) अवकलनीय है, कौन-सा है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
- एक फलन को उस बिंदु पर तब अवकलनीय कहा जाता है जब वहां उस बिंदु पर एक परिभाषित अवकलज होता है।
- हर शून्य नहीं होना चाहिए।
- श्रृंखला नियम: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {{\rm{f}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)} \right] = {\rm{\;f'}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right){\rm{g'}}\left( {\rm{x}} \right)\)
गणना:
दिया गया है: \({\rm{f}}\left( {\rm{x}} \right) = \sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} \)
\({\rm{f'}}\left( {\rm{x}} \right) = \frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{f}}\left( {\rm{x}} \right)} \right)\)
\(= \frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} } \right)\)
\(= \frac{1}{{2\sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} }} \times \frac{{\rm{d}}}{{{\rm{dx}}}}\left( {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} \right)\) \(\left( \because {\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\sqrt {\rm{x}} } \right) = \frac{1}{{2\sqrt {\rm{x}} }}} \right)\)
\(\Rightarrow {\rm{f'}}\left( {\rm{x}} \right) = \frac{1}{{2\sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} }}\left( { - {{\rm{e}}^{ - {{\rm{x}}^2}}}} \right)\frac{{\rm{d}}}{{{\rm{dx}}}}\left( { - {{\rm{x}}^2}} \right)\)
\(= \frac{{\left( { - {{\rm{e}}^{ - {{\rm{x}}^2}}}} \right)}}{{2\sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} }}\left( { - 2{\rm{x}}} \right)\)
\(= \frac{{{\rm{x}}{{\rm{e}}^{ - {{\rm{x}}^2}}}}}{{\sqrt {1 - {{\rm{e}}^{ - {{\rm{x}}^2}}}} }}\)
अब, x = 0 पर, f’(x) = 0/0
इसलिए, x = 0 पर छोड़कर f’(x), x के सभी मानों के लिए परिभाषित है।
⇒ f(x), (-∞, 0) ∪ (0, ∞) पर अवकलनीय है।
अतः विकल्प (3) सही है।Last updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.