संफुल्लन तथा निम्नन संकारकों को क्रमश: L+ तथा L- के रूप में चिन्हित किया गया है। कोणीय संवेग (L) तथा इसके विभिन्न घटकों (Lx, Ly तथा Lz) के मध्य सही दिक्परिवर्तक संबंध है

  1. [L2, L+] = [L2, L-] = Lz
  2. [L2, L+] = [L2, L-] = Lx
  3. [L2, L+] = [L2, L-] = Ly
  4. [L2, L+] = [L2, L-] = 0

Answer (Detailed Solution Below)

Option 4 : [L2, L+] = [L2, L-] = 0

Detailed Solution

Download Solution PDF

संकल्पना:

कुल कोणीय संवेग और संफुल्लन /निम्नन संकारकों के बीच दिक्परिवर्तक संबंध

  • क्वांटम यांत्रिकी में, ऊपर () और नीचे () संकारक चुंबकीय क्वांटम संख्या m को परिवर्तित करते हैं, लेकिन वे कुल कोणीय संवेग को प्रभावित नहीं करते हैं।
  • संफुल्लन संकारक  चुंबकीय क्वांटम संख्या M को 1 से बढ़ाता है, और निम्नन संकारक  इसे 1 से कम कर देता है।
  • कुल कोणीय संवेग और इन संफुल्लन और निम्नन संकारकों के बीच दिक्परिवर्तक शून्य होता है क्योंकि इन संकारकों को लागू करने से कुल कोणीय संवेग परिमाण नहीं बदलता है।

व्याख्या:

  • कुल कोणीय संवेग संकारक  कोणीय संवेग सदिश के परिमाण का प्रतिनिधित्व करता है, जबकि संफुल्लन और निम्नन संकारकों केवल z-अक्ष के साथ प्रक्षेपण को प्रभावित करते हैं (अर्थात, ).
  • संफुल्लन और निम्नन संकारक के साथ का दिक्परिवर्तक शून्य होता है क्योंकि वे कुल कोणीय संवेग के परिमाण को प्रभावित नहीं करते हैं। इसके बजाय, वे केवल घटक को संशोधित करते हैं:

गणना:

  • कुल कोणीय संवेग संकारक  को इस प्रकार परिभाषित किया गया है:
  • संफुल्लन और निम्नन संकारक को कोणीय संवेग घटकों और के संदर्भ में परिभाषित किया गया है:
  • अब, हम दिक्परिवर्तक  की गणना इसे विस्तारित करके करते हैं:
  • इसे तीन भागों में विभाजित किया जा सकता है:
  • इसलिए, कुल दिक्परिवर्तक  के परिणामस्वरूप होता है:
  • इसी तरह, निम्नन संचालक के लिए, हम समान चरणों का पालन करते हैं:
    • इसे भागों में तोड़ने से प्रत्येक दिक्परिवर्तक के लिए शून्य भी मिलता है:
  • इस प्रकार, अंतिम दिक्परिवर्तक है:

निष्कर्ष:

सही दिक्परिवर्तक संबंध है: .

संफुल्लन 

More Basic Principles of Quantum Mechanics Questions

Hot Links: teen patti sweet teen patti master 2025 online teen patti teen patti - 3patti cards game downloadable content