Question
Download Solution PDFω = 1 पर स्थानांतरण फलन \(G(s) = \frac{1}{{s + 1}}\) का परिमाण और चरण क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
स्थानांतरण फलन के परिमाण को jω के साथ s को प्रतिस्थापित करके और फिर स्थानांतरण फलन के परिमाण और चरण को लेकर ज्ञात किया जा सकता है।
विश्लेषण:
\(G(s) = \frac{1}{{s + 1}}\)
\(G(jω ) = \frac{1}{{jω + 1}}\)
\(|G(jω )| = \frac{1}{\sqrt{ω^2 + 1^2}}\)
∠ G(jω) = - tan-1(ω/1)
ω = 1 पर,
\(|G(jω )| = \frac{1}{\sqrt{2}} = 0.707\)
∠ G(jω) = - tan-1(1/1) = - 45°
Last updated on Jul 2, 2025
-> ESE Mains 2025 exam date has been released. As per the schedule, UPSC IES Mains exam 2025 will be conducted on August 10.
-> UPSC ESE result 2025 has been released. Candidates can download the ESE prelims result PDF from here.
-> UPSC ESE admit card 2025 for the prelims exam has been released.
-> The UPSC IES Prelims 2025 will be held on 8th June 2025.
-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.
-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.