यदि \( \mathop a\limits^ \to \) , \(\mathop b\limits^ \to \) और \(\mathop c\limits^ \to \) इस तरह से तीन सदिश हैं कि \(\mathop a\limits^ \to +\mathop b\limits^ \to + \mathop c\limits^ \to = \mathop 0\limits^ \to \) और \(|\mathop a\limits^ \to | = 1, |\mathop b\limits^ \to | = 4, |\mathop c\limits^ \to | = 2\)  फिर \(2(\mathop a\limits^ \to.\mathop b\limits^ \to + \mathop b\limits^ \to.\mathop c\limits^ \to+\mathop c\limits^ \to.\mathop a\limits^ \to)\) के बराबर क्या है?

This question was previously asked in
UP TGT Mathematics 2021 Official Paper
View all UP TGT Papers >
  1. 21
  2. -21
  3. 19
  4. \(\dfrac{21}{2}\)

Answer (Detailed Solution Below)

Option 2 : -21
Free
UP TGT Hindi FT 1
9.9 K Users
125 Questions 500 Marks 120 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

दो सदिश a और b के बिंदु गुणनफल को इस प्रकार परिभाषित किया गया है:

\(a.b = |a|.|b|cos \ \theta \)

जहाँ θ सदिश a और b के बीच का कोण है।

दो सदिशों केबिंदु गुणनफल के कुछ गुण इस प्रकार हैं:

  • a.b = b.a (क्रमचयी)
  • a.(b + c) = a.b + a.c (वितरक)

दिया गया:

\(\mathop a\limits^ \to +\mathop b\limits^ \to + \mathop c\limits^ \to = \mathop 0\limits^ \to \) ,

\(|\mathop a\limits^ \to | = 1, |\mathop b\limits^ \to | = 4, |\mathop c\limits^ \to | = 2\)

गणना:

हमारे पास \(\vec{a}^{2}=1, \vec{b}^{2}=16,\vec{c}^{2}=4 \)

\(\therefore (\vec{a}\ +\ \vec{b}\ + \vec{c} )\cdot (\vec{a}\ +\ \vec{b}\ + \vec{c} )=0\)

\(\Rightarrow \vec{a}^2 + \vec{a}.\vec{b}\ + \vec{a}.\vec{c}\ + \vec{b}.\vec{a}\ + \vec{b}^2 \ + \vec{b}.\vec{c}\ + \vec{c}.\vec{a}\ + \vec{c}.\vec{b}\ + \vec{c}^2 = 0\)

\(\Rightarrow \vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2(\vec{a}.\vec{b}\ + \vec{b}.\vec{c}\ + \vec{c}.\vec{a})=0\)

\(\Rightarrow 1 + 16 + 4 + 2(\vec{a}.\vec{b}\ + \vec{b}.\vec{c}\ + \vec{c}.\vec{a})=0\)

\(\Rightarrow 21 + 2(\vec{a}.\vec{b}\ + \vec{b}.\vec{c}\ + \vec{c}.\vec{a})=0\)

\(\Rightarrow 2(\vec{a}.\vec{b}\ + \vec{b}.\vec{c}\ + \vec{c}.\vec{a})=-21\)

Latest UP TGT Updates

Last updated on May 6, 2025

-> The UP TGT Exam for Advt. No. 01/2022 will be held on 21st & 22nd July 2025.

-> The UP TGT Notification (2022) was released for 3539 vacancies.

-> The UP TGT 2025 Notification is expected to be released soon. Over 38000 vacancies are expected to be announced for the recruitment of Teachers in Uttar Pradesh. 

-> Prepare for the exam using UP TGT Previous Year Papers.

More Scalar and Vector Product Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti - 3patti cards game downloadable content teen patti cash game teen patti gold download teen patti customer care number