Question
Download Solution PDF\(\rm \int x\tan^{-1}x dx\) का मूल्यांकन कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
खंडशः समाकलन: खंडशः समाकलन गुणनफलों का समाकलन ज्ञात करने की एक विधि है।
खंडशः समाकलन के लिए सूत्र को निम्न द्वारा ज्ञात किया गया है:
⇒ \(\rm ∫ u vdx=u ∫ vdx- ∫ \left({du\over dx}\times ∫ vdx\right)dx \) + C
जहाँ u फलन u(x) है और v फलन v(x) है।
ILATE नियम में विशेष रूप से इस नियम की वरीयता क्रम व्युत्क्रम, लघुगुणक, बीजगणितीय, त्रिकोणमितीय और घातांक जैसे कुछ फलनों पर आधारित होती है।
गणना:
I = \(\rm \int x\tan^{-1}x dx\)
I = \(\rm \tan^{-1}x\int xdx - \int \left({1\over1+x^2}\int xdx\right)dx+c\)
I = \(\rm {x^2\tan^{-1}x\over2} - {1\over2}\int \left({x^2\over1+x^2}\right)dx+c\)
I = \(\rm {x^2\tan^{-1}x\over2} - {1\over2}\int \left(1-{1\over1+x^2}\right)dx+c\)
I = \(\rm {1\over2}\left[x^2\tan^{-1}x - (x-\tan^{-1}x)\right]+c\)
I = \(\boldsymbol{\rm {1\over2}\left[(x^2+1)\tan^{-1}x - x\right]+c}\)
Last updated on Jul 7, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.