Find the value of \(\rm \int_{0}^{\pi\over2}\sin^2x\cos x\) dx

  1. \(\rm -{1\over3}\)
  2. \(\rm 1\over3\)
  3. \(\rm 2\over3\)
  4. \(\rm -{2\over3}\)

Answer (Detailed Solution Below)

Option 2 : \(\rm 1\over3\)
Free
CRPF Head Constable & ASI Steno (Final Revision): Mini Mock Test
20.8 K Users
40 Questions 40 Marks 45 Mins

Detailed Solution

Download Solution PDF

Concept:

  • ∫ sin x dx = -cos x + C
  • ∫ cos x dx = sin x + C
  • ∫ xn dx = \(\rm {x^{n+1}\over n+1}\) + C

Calculation:

I = \(\rm ∫\sin^2x\cos x\)dx

Let sin x = t

dt = cos x dx

⇒ I = ∫ t2 (dt)

⇒ I =  \(\rm t^3\over3\) + c

⇒ I = \(\rm {\sin^3x\over3}\) + c

Putting the limits 

⇒ I = \(\rm \left[{\sin^3x\over3}+c\right]^{\pi\over2}_0\)

⇒ I = \(\rm \left[{\sin^3{\pi\over2}\over3}+c\right]-\left[{\sin^3(0)\over3}+c\right]\)

⇒ I = \(\boldsymbol {\rm {1\over3}}\)

Latest Indian Coast Guard Navik GD Updates

Last updated on Jun 26, 2025

-> The Indian Coast Guard Navik GD Application Deadline has been extended. The last date to apply online is 29th June 2025.

-> A total of 260 vacancies have been released through the Coast Guard Enrolled Personnel Test (CGEPT) for the 01/2026 and 02/2026 batch.

-> Candidates can apply online from 11th to 25th June 2025.

-> Candidates who have completed their 10+2 with Maths and Physics are eligible for this post. 

-> Candidates must go through the Indian Coast Guard Navik GD previous year papers.

Get Free Access Now
Hot Links: teen patti - 3patti cards game downloadable content teen patti real cash game teen patti master 2025 teen patti master real cash