Find the area of the triangle ABC if adjacent sides of a triangle  are \(\overrightarrow {AB} = \hat i + 2\hat j + 3\hat k\;and\;\overrightarrow {BC} = 3\hat i + 7\hat j + \hat k\)

  1. \(\frac {\sqrt{426}}{2}\)
  2. 61
  3. \(\frac {\sqrt{426}}{3}\)
  4. 426

Answer (Detailed Solution Below)

Option 1 : \(\frac {\sqrt{426}}{2}\)
Free
All India Agniveer Army GD: Ultimate Live Test - 04
29.8 K Users
50 Questions 100 Marks 60 Mins

Detailed Solution

Download Solution PDF

Concept:

  • If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \times \;\vec b = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}} \end{array}} \right|\)
  • If \(\vec a\;and\;\vec b\) are the adjacent sides of a triangle, then area of triangle is given by: \(\frac{1}{2}\;\left| {\vec a \times \;\vec b} \right|\)

Calculation:

Given: \(\overrightarrow {AB} = \hat i + 2\hat j + 3\hat k\;and\;\overrightarrow {BC} = 3\hat i + 7\hat j + \hat k\) are the adjacent sides of a triangle ABC.

As we know that, If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \times \;\vec b = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}} \end{array}} \right|\)

⇒ \(\vec {AB} \times \;\vec {BC} = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {{1}}&{{2}}&{{3}}\\ {{3}}&{{7}}&{{1}} \end{array}} \right|\)

⇒ \(\vec {AB} \times \;\vec {BC} = \hat i(2 - 21) - \hat j(1 - 9) + \hat k(7 - 6)\)

⇒ \(\vec {AB} \times \;\vec {BC} = -19\hat i + 8\hat j+ \hat k\)

⇒ \(|\vec{AB} \times \vec{BC}| = \sqrt{426}\)

So, the area of the required triangle ABC is \(\frac{1}{2}|\vec{AB} \times \vec{BC}| = \frac{\sqrt{426}}{2}\)

Hence, the correct option is 1.

Latest Indian Coast Guard Navik GD Updates

Last updated on Jul 4, 2025

-> The Indian Coast Guard Navik GD Application Correction Window is open now. Candidates can make the changes in the Application Forms through the link provided on the official website of the Indian Navy.

-> A total of 260 vacancies have been released through the Coast Guard Enrolled Personnel Test (CGEPT) for the 01/2026 and 02/2026 batch.

-> Candidates can apply online from 11th to 25th June 2025.

-> Candidates who have completed their 10+2 with Maths and Physics are eligible for this post. 

-> Candidates must go through the Indian Coast Guard Navik GD previous year papers.

More Applications of Vectors Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti tiger teen patti game paisa wala teen patti comfun card online teen patti joy mod apk teen patti real