Logarithmic Function MCQ Quiz in मराठी - Objective Question with Answer for Logarithmic Function - मोफत PDF डाउनलोड करा

Last updated on Apr 6, 2025

पाईये Logarithmic Function उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Logarithmic Function एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Logarithmic Function MCQ Objective Questions

Top Logarithmic Function MCQ Objective Questions

Logarithmic Function Question 1:

If log2 = 0.3010 and log 3 = 0.4771, then the value of log 6 is

  1. 0.8177
  2. 0.7781
  3. 0.6781
  4. 0.7681

Answer (Detailed Solution Below)

Option 2 : 0.7781

Logarithmic Function Question 1 Detailed Solution

Given:
log 2 = 0.3010

log 3 = 0.4771

Formula used:

log (x × y) = log x + log y

Calculation:

log 6 = log (2.3)

⇒ log (2.3) = log 2 + log 3

⇒ log (2.3) = 0.3010 + 0.4771 = 0.7781

∴ log 6 = 0.7781.

Logarithmic Function Question 2:

What is  equal to?

  1. 1
  2. 5

Answer (Detailed Solution Below)

Option 2 :

Logarithmic Function Question 2 Detailed Solution

Concept:

 

Calculation:

Hence, option (2) is correct.

Logarithmic Function Question 3:

If log 8 = 0.903, then log 2 will be equal to?

  1. 0.503
  2. 0.301
  3. 0.443
  4. 0.761

Answer (Detailed Solution Below)

Option 2 : 0.301

Logarithmic Function Question 3 Detailed Solution

log 8 = 0.903

log (2)= 0.903                         [∵ log ab  = b log a]

log 2 = 0.903/3 = 0.301

Logarithmic Function Question 4:

If log (x + 2) + log (x − 2) = log 5 then the value of x will be

  1. -3
  2. 3
  3. ± 3
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 3

Logarithmic Function Question 4 Detailed Solution

Concept:

Logarithm properties

Product rule: The log of a product equals the sum of two logs.

Quotient rule: The log of a quotient equals the difference of two logs.

Calculation:

Given:

log (x + 2) + log (x − 2) = log 5

⇒ log [(x + 2) (x – 2)] = log 5                (∵ )

⇒ log (x 2 – 4) = log 5

⇒ x2 – 4 = 5

⇒ x2 = 9

∴ x = ± 3

Here x ≠ -3 is not possible because (x – 2) should be greater than zero.

∴ x = 3

Logarithmic Function Question 5:

The value of Log327 is?

  1. 2
  2. 1
  3. 9
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above

Logarithmic Function Question 5 Detailed Solution

Given:

We have a logarithm expression 'Log327'

Concept:

Logarithm

Formula Used:

Logab = x 

a= b

Calculation:

Log327 = n

⇒ 3n = 27

⇒ 3n = 33

⇒ n = 3
∴ The value of Log327 is 3.

Logarithmic Function Question 6:

If log0.3 (x – 1) 0.09 (x – 1), then the value of x will lie in the interval 

  1. (2, )
  2. (– 2, – 1) 
  3. (1, 2)
  4. (– 2, 1)

Answer (Detailed Solution Below)

Option 1 : (2, )

Logarithmic Function Question 6 Detailed Solution

Concept Used:-

The base rule of logarithm for a, b and x is given as,

0\)

Here, a is a positive integer.

Also, the power rule of logarithm is given as,

Explanation:-

Given,

log0.3 (x – 1) 0.09 (x – 1),

With the help of above log rule, it can be written as,

On comparing both sides, we get,

\sqrt{x-1}\ \ \ \text{ and}\\ \Rightarrow \sqrt{x-1}>0\)

Now we have,

\sqrt{x-1} \\ & \Rightarrow (\sqrt{x-1})^20 \\ & \Rightarrow (x-2)(x-1)>0 \\ & \Rightarrow x2 \end{aligned}\)

Also.

With the obtained intervals, we get,

x > 2

So the value of x will lie in the interval (2, ).

Correct option is 1.

Logarithmic Function Question 7:

Find out the value of x if logx 4 + logx 16 + logx 64 = 12

  1. 1
  2. 2
  3. 7
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 2

Logarithmic Function Question 7 Detailed Solution

Given:

logx 4 + logx 16 + logx 64 = 12

Formula Used:

If logx y = a, then xa = y

logx ab = b logx a

Calculation:

logx 4 + logx 16 + logx 64 = 12

⇒ logx 22 + logx 24 + logx 26 = 12

⇒ 2 logx 2 + 4 logx 2 + 6 logx 2 = 12

⇒ 12 logx 2 = 12

⇒ logx 2 = 1

⇒ 2 = x1

∴ x = 2

Logarithmic Function Question 8:

What is the value of [log10(5 log10 100)]2 ?

  1. 4
  2. 3
  3. 2
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above

Logarithmic Function Question 8 Detailed Solution

Given:

The value of [log10(5 log10 100)]2

Concept used:

log am = m log a

loga a = 1

Calculation:

 [log10(5 log10 100)]2

⇒  [log10(5 log10 102)]2

⇒  [log10(10 log10 10)]2    [As log am = m log a]

⇒ log10(10 × 1)]2   [As loga a = 1]

⇒ [log10 10]2

⇒ [1]2 = 1

∴ The require value is 1.

Logarithmic Function Question 9:

For all x ϵ (-1, 1), tan h-1x is equal to

Answer (Detailed Solution Below)

Option 3 :

Logarithmic Function Question 9 Detailed Solution

Concept:

Calculation:

We know that

Let y = tan h-1 (x)

⇒ x = tan hy

⇒ xe2y + x = e2y - 1

⇒ e2y(1 - x) = 1 + x

On taking log both sides, we get,

Logarithmic Function Question 10:

If log2 = 0.3010 and log 3 = 0.4771, then the value of log 6 is

  1. 0.8177
  2. 0.7781
  3. 0.6781
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 0.7781

Logarithmic Function Question 10 Detailed Solution

Given:
log 2 = 0.3010

log 3 = 0.4771

Formula used:

log (x × y) = log x + log y

Calculation:

log 6 = log (2.3)

⇒ log (2.3) = log 2 + log 3

⇒ log (2.3) = 0.3010 + 0.4771 = 0.7781

∴ log 6 = 0.7781.

Hot Links: online teen patti teen patti all games dhani teen patti teen patti master download teen patti - 3patti cards game downloadable content