Direct Ratio MCQ Quiz in मल्याळम - Objective Question with Answer for Direct Ratio - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 20, 2025

നേടുക Direct Ratio ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Direct Ratio MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Direct Ratio MCQ Objective Questions

Top Direct Ratio MCQ Objective Questions

Direct Ratio Question 1:

If 2 cot θ = 3, then find the value of .

  1. 0

Answer (Detailed Solution Below)

Option 3 : 0

Direct Ratio Question 1 Detailed Solution

Given: 

2cotθ = 3 

Formula used: 

Sinθ = P/H 

Cosθ = B/H 

Tanθ = P/B 

Cotθ = B/P 

H2 = P2 + B2

where P = Perpendicular 

B = Base 

H = Height 

Calculation: 

2cotθ = 3 

⇒ cotθ = 3/2 

on comparing with (Cotθ = B/P), we get 

⇒ B = 3

⇒ P = 2 

According to Pythagorean theorem

⇒ H2 = P2 + B2

⇒ H2 = 22 + 32

⇒ H = √13 

⇒ Sinθ = 2/√13  

⇒ Cosθ = 3/√13  

⇒ Tanθ = 2/3 

Putting all the values in the given equation:

= (√13 * 2/√13  - 3 *  2/3 )/ (3 *  2/3 + √13 * 3/√13)

⇒ (2 - 2)/(2 + 3)

⇒ 0

The value of the expression is 0.

Direct Ratio Question 2:

If  then the value of  is:

Answer (Detailed Solution Below)

Option 2 :

Direct Ratio Question 2 Detailed Solution

Given:

Concept used:

TanA = SinA / CosA

Calculation:

Dividing by CosA we get,

3 TanA + 2 / 3 TanA - 2

Now putting the value of Tan A we get,

⇒ 

⇒ 

∴ The  correct option is 2

Direct Ratio Question 3:

If tan x = , then the value of  is:

  1. 0
  2. 1
  3. 0.1
  4. 0.5

Answer (Detailed Solution Below)

Option 3 : 0.1

Direct Ratio Question 3 Detailed Solution

Given

tan x = 7/5

Formula used

tan x = P/B

sin x = P/H

cos x = B/H

Calculation

tan x = 7/5 = P/B

H2 = P2 + B2

H2 = 72 + 52

H2 = 49 + 25 = 74

h = √74.

⇒ (9 × 7/√74 - 42/5 × 5/√74)/(15 × 7/√74 + 21 × 5/√74)

⇒ (21/√74)/(210/√74)

⇒ 21/210

⇒ 0.1

The value is 0.1

Direct Ratio Question 4:

If acot θ = b, then what will be the value of ?

  1. b2 + a2
  2. 0

Answer (Detailed Solution Below)

Option 3 :

Direct Ratio Question 4 Detailed Solution

Given

a cot θ = b

Calculation

Dividing the whole equation by cosθ, we get:

⇒ (b - asinθ/cosθ)/(b + asinθ/cosθ)

⇒ (b - atanθ)/(b + atanθ)

⇒ (b - a × a/b)/(b + a × a/b) 

⇒ (b2 - a2)/(b2 + a2) 

The value of the expression is  (b2 - a2)/(b2 + a2) .

Direct Ratio Question 5:

If Cos A = , find cot A. 

Answer (Detailed Solution Below)

Option 1 :

Direct Ratio Question 5 Detailed Solution

Given:

Cos A = 9/41 

Formula used:

 cot A = cos A/sin A

Cos2 A + sin2 A = 1

Calculation:

Cos2 A + sin2 A = 1

⇒ ( 9/41)2 + sin2 A = 1

⇒  sin2 A = 1 - 81/1681

 ⇒ sin2 A = 1600/1681

⇒  sin A = 40/41

 cot A = cos A/sin A

 ⇒ cot A = 9/40

∴ Option 1 is the correct answer.

Direct Ratio Question 6:

If sin θ = , then the value of (3cos θ - 4 cos3 θ) is:

  1. 0
  2. 1
  3. 2
  4. -1

Answer (Detailed Solution Below)

Option 1 : 0

Direct Ratio Question 6 Detailed Solution

Given:

sin θ = 

Concept used:

Calculation:

sin θ = 

⇒ sinθ = sin 30°

So, θ = 30°

3cos θ - 4 cos3 θ

⇒ 3 ×  - 4 × 

⇒ 

⇒ 0

∴ The required answer is 0.

Direct Ratio Question 7:

Evaluate the value of .

  1. 1
  2. 2
  3. -1
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Direct Ratio Question 7 Detailed Solution

Given:

The expression to evaluate is:

Formula used:

The cosecant function is defined as:

Properties used:

is the cosine of angle x.

Step 1: Substitute the value of cosecant using the identity into the expression:

We now have:

Step 2: The expression becomes:

Step 2: Apply the identity to both terms:

Step 3: Simplify the expression using the identity:

Step 4: Simplify the terms:

∴ The value of the expression is 

Direct Ratio Question 8:

If 7 tan θ = 3, and θ is an acute angle, then is equal to:

Answer (Detailed Solution Below)

Option 1 :

Direct Ratio Question 8 Detailed Solution

Given:

7tan θ = 3

Calculation:

Divide by 'cos θ' in both numerator and denominator,

⇒ 

⇒ 

⇒ [5 × 3/7 - 1] / [5 × 3/7 + 2]

⇒ [15/7 - 1] / [15/7 + 2]

⇒ [(15 - 7)/7] / [(15 + 14)/7]

⇒ [8/7] / [29/7]

⇒ 8/29

∴ The correct answer is option (1).

Direct Ratio Question 9:

If tan α = 6, then sec α equals to:

Answer (Detailed Solution Below)

Option 3 :

Direct Ratio Question 9 Detailed Solution

Given:

Tan α = 6

Concept used:

Tan θ = P/B

Sec θ = H/B

Where, P = perpendicular; B = base; H = hypotenuse

Formula used:

Pythagorean theorem:

H2 = P2 + B2

Where, P = perpendicular; B = base; H = hypotenuse

Calculation:

Tan α = 6/1 = P/B

Using Pythagorean theorem:

⇒ H2 = P2 + B2

⇒ H2 = (6)2 + (1)2

⇒ H = √37

Sec α = H/B = √37

∴ The correct answer is √37. 

Direct Ratio Question 10:

If 7 cosA = 6, then the numerical value of (cosecA + cotA) / (cosecA - cotA) is:

  1. 1
  2. 0
  3. 13
  4. -13

Answer (Detailed Solution Below)

Option 3 : 13

Direct Ratio Question 10 Detailed Solution

Given:

If 7 cosA = 6

Formula Used:

cosec A = 1/sin A

cot A = cos A/sin A

Calculation:

(cosec A + cot A) / (cosec A - cot A)

⇒ ( + ) / ( - )

⇒  / 

⇒ (1 + cos A) / (1 - cos A)

⇒ (1 + 6/7) / (1 - 6/7)

⇒ (13/7) / (1/7)

⇒ 13 / 1 = 13

∴ The correct answer is option (3).

Hot Links: teen patti master 51 bonus teen patti royal teen patti online game